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ABSTRACT

This thesis is concerned with the application of cross-correlation

techniques to linear antenna arrays. The basic cross-correlation system,

which is considered, consists of two linear receiving arrays excited by a

distribution of remote radio sources. The terminal voltage of each array is

passed through a narrow-band RF filter and the two resulting signals are cross-

correlated. It is demonstrated that this system can measure the mutual

coherence function of the source distribution. To do this the patterns of

the two antennas must be scanned independently. A Fourier analysis shows

that the cross-correlation system's output is a filtered version of the mutual

coherence function. From this output a three-dimensional principal solution

can be deduced; it is a generalization of the one-dimensional principal

solution given by Bracewell and Roberts in connection with radio astronomy.

In addition to cross-correlating the voltages obtained from two distinct

arrays one can -erform a cross-correlation of signals obtained from one of the

arrays. By dividing the signal from each element into two parts (with

predetermined weighting), and by combining additively each set of signals, one

obtains two output voltages from what are effectively two coincident arrays.

These signals are then cross-correlated in the usual fashion. A similar cross-

correlation can be performed on the voltages obtained from the other array of the

system. Finally, a fourth cross-correlation function results when the signals of

the two arrays are combined in reverse order and it is the complex conjugate of

the original cross-correlation function. These four distinct outputs are the

elements of the 2 x 2 correlation matrix of the system. \ Fourier analysis of

the correlatiop matrix leads to a more general principal solution for the system

as a whole which yields considerably more information about the source
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1. INTRODUCTION

The concept of correlation has been used to advantage for many years in

various branches of mathematical science. It is basically a statistical concept

and such well-known statisticians as Karl Pearson and A. A. Chuprov2 have

employed it extensively in their work. For example, Pearson defined the

correlation coefficient of two sets of numbers x, x- l . . . . . .  n x 1  Xn,

and y-n' Y-n+l' . . . . . .*' Yn-1  Yn' to be

n

i=-n ir =j x.)2• 4 (YJ)2

i=-n i=-n

which is the cosine of the angle in 2n+l-space between the two vectors X and Y.

If the elements of X and Y are samples of a time sequence, it is of

interest to obtain a correiation coefficient between the two sequences

when one of them is shifted in time, time being represented by the

index of the correlated data. Hence we can write

n
lim 1rk n -- pow 2n+l =n x 1 y'1k

If the values xk and yk are complex, we modify the above expression as

follows

n
lim I *

~k =n--) co 2n+l E; xj Yj-k
1-=-n



2

where the superscript indicates the complex conjugate of the quantity.

The above expression as a function of the index k. is the cross-correlation

between the two time series X and Y It is a simple step to the generalization

of these discrete time series to continuous ones and the resulting cross-

correlation function for the continuous case is

-T
fl(T) = T-w I 4 T x(t) y* (t-'r) dt

Where T is the time delay of one function relative to the other. Norbert

Wiener 3 ' 4 has made a thorough study of stationary time series and has shown

that the methods of Fourier analysis can be carried over into the domain

of such functions in spite of their statistical nature.

In the case of antennas the time series represent signals which

originate from remote radio sources distributed in various directions.

Consequently the cross-correlation function of a pair of signals should

now be written as

T

T(Tr,u, v) = lim I V(t u) V*(t- T v) dt

There are now two additional variabl~s, u and v, which represent the

directions from which the signals originate.

There is a considerable literature on the subject of such spatio-

temporal cross-correlation functions or mutual coherence functions5 as

they are usually called, most of it having originated in optical studies.

The mutual coherence function of two light disturbances is analogous to

the cross-correlation function of two voltages, Complete correlation and
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zero correlation correspond to coherence and incoherence respectively.

More generally one speaks of partial coherence. historically, the theory

56
of partial coherence, according to Wolf5, dates tack to Verdet 6

. More

recent contributors have been Von Laue , Van Cittert 8, Zernike , WolfI0)II'12

13 14 15J16
Blanc-Lapierre and Dumontet , Beran , and Parrent1' . Although developed

primarily to describe optical phenomena, the theory of partial coherence can

also be used to describe the correlation properties of radio fields.

It is the role of the receiving antenna to act as a device which responds

to the fields from the remote radio sources. In many practical cases the

antenna consists of a number of smaller elementary antennas, which are

located on a straight line in space. Only such composite antennas, called

linear arrays, will be considered in this thesis. They were chosen not only

because they are widely used but because they lend themselves readily to

mathematical analysis. In this connection the concept of the linear

antenna array as a filter of spatial frequencies17 has become quite

widespread in recent years. The definitive paper on the subject, by

Bracewell and Roberts a, appeared in 1954 in connection with radio

astronomy. A remote source distribution (e.g., the extraterrestrial radio

sources), can be analyied as a function of direction by Fourier techniques

to yield a spectrum of spatial frequency components. One can show that a

finite antenna acts as a low-pass spatial frequency filter. In the time

domain there is usually a narrow-band RF filter associated with the

antenna. Thus the antenna can be thought of as a spatio-temporal filter

of the incoming radio signals.

The basic cross-correlation antenna system consists of two antennas

whose terminal voltages are cross-correlated. There are several techniques
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19,20
to do this electrically19 . The first practical example of such a

system appears to have been the Mill's Cross21 which consists of two long

arrays intersecting at right angles. When the array voltages are cross-

correlated with T = 0, the power patteraof the system is the product of the

two field strength patterns of the arrays. This product pattern is

practically zero except in the region where the fknnshaped beams of the two

arrays intersect at right angles. This produces a pencil beam which is the

same as that of the field strength pattern of a rectangular planar antenna

whose dimensions are given by the lengths of the two arrays. Another well

known example of this type of system is the Compound Interferometer22 in

which a uniformly weighted linear aperture of length L is placed adjacent

to a simple two-element interferometer of the same length. The cross-

correlation output (again with T = 0) yields a product pattern which is

the same as the field strength' pattern of a uniformly weighted linear aperture

of length 4L. Both of these systems are used in radio astronomy.

Taking inspiration from the success in this field, many workers have

extended the use of cross-correlation techniques to radio direction finding,

radar, and general communication antenna systems. Some of these

contributors are: Arsac 23, Barber 24,2 Berman and Clay 26, Drane and
-Parrent 2 7 ) 2 8, Hanbury Brown and Twiss 2 9 ; 3 0 Linder31 MacPhie 3 2 ' 3 3 ' 3 4

Pedinoff and Ksienski 35, Prine We lsby and Tucker 3 7 White Ball and

38 39Deckett8, and Young , Since some of the above investigators deal with

single and multiple products of antenna voltages the resulting outputs no

longer are related to inputs by the law of superposition. Consequently, the

generic terms "nonlinear antenna systems" or "data processing antenna systems"

have become associated with these various schemes.
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In this thesis a general theory of mapping the mutual coherence function,

T(T,u,v), of a distribution of remote radio sources is presented for the

first time. Previous workers considered only the case of incoherent

18
sources and zero time shift (7=0). It will be shown that T(Tu,v) can

be measured with a correlation antenna system whose two linear arrays are

scanned independently. Four distinct outputs from the system are obtained.

These four correlation functions are the elements of the correlation matrix

of the system. A three-dimensional Fourier analysis shows that each of the

systam outputs is a filtered version of the mutual coherence function of

the source distribution. The analysis is for a partially coherent

distribution, but the limiting cases of complete coherence and incoherence

are considered and are shown to give rise to special types of system outputs.

Consequently, if one or the other of these types of outputs is observed in

practice, one can infer that the source distribution is completely coherent

or incoherent as the case may be. The problem of taking a finite time-

average in measuring the correlation of signals is also considered.

It is shown that when one compares cross-correlation with conventional

antenna systems the comparison should be made between the cross-correlated

output of the former and the square-law detected output of the latter system.

Indeed it is shown that the square-law detected output is a degenerate case

of the correlation output. An example of the improvement obtainable by

using the cross-correlation system is given for the case of the optimum

40
Dolph-Chebyshev array design .

The generalization of a two-antenna correlation system to one containing

N antennas is analyzed. It is shown that such a system yields information
a
about the higher order moments of the temporal probability distribution

I
I
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of the sources. The methods of Fourier analysis used in 'he single

correlation case can be generalized to more dimensions in the multiple

correlation case.

Finally, a new type of radar system employing cross-correlation is

described and analyzed in detail. Just as a cross-correlation receiving

system employs two antennas, thp radar system uses two antennas for both

transmitting and receivtng, four antennas in all. It is shown that such

a system has distinct advantages over conventional systems employing a

single antenna. An improved Dolph-Chebysbev design becomes possible

and interference noise can be suppressed. The system could also be

used to determine possible correlation between the returns from various

targets.
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2. LINEAR ARRAY THEORY

A linear array consists of a number of elementary antennas which are

colinear, i~e., are located on a straight line in space. If, as is customary,

the array elements are identical, then the array's radiation pattern is

factorable; it is the product of the element pattern and the pattern of the

array when its elements are replaced by isotropic antennas. Consequently

in linear array theory we need consider only arrays of isotropic antennas

knowing that for any specific type of element, e.g., a half-wave dipole,

we can obtain the actual array pattern by Multip.lying the elemefit

pattern by the pattern of the isotropic array. We should also note

that the polarization response of the array is the same as that of its

elements. Thus by removing the element factor we are reducing linear antenna

array theory from a vector to a scalar formulation.

If the elements of an array of finite length are increased in number

without limit and the element spacing approaches zero, we obtain a

"fcontinuous array", as opposed to the discrete array mentioned above. In

what follows we will refer to both continuous and discrete arrays, whose

elements are located on a straight line, simply as linear antennas.

Now as is shown in Figure 1, two liear antennas (with isotropic elements)

are located on the x axis of a convenient coordinate system. One is of length LA

and the other, located a distance I to the right of the first, is of length LB.

It is well known that except for a constant factor, the far field patterns of the

antennas )operating at frequency w are given by
0

-LA /2
A(u)- (2 L/ a(x)eJUXdx (1)
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and

Lj/2 +
B~u) = 42w _ b(x)eju dx (2)

fLB/2 +

where u = 1 sin 6

3 = phase constant,

6 = angle measured from the normal to the antenna aperture,

x = aperture coordinate,

a(x) = antenna A's aperture weighting function,

b(x) = antenna B's aperture weighting function.

Note that the time-harmonic far fields are represented by complex quantities

according to the usual convention. We will use this convention throughout the

thesis for both fields and voltages. However, in cases where two voltages are

being multiplied one must consider the product to be the product of two real

quantities. The real part of the product of the corresponding complex

voltages is not the same as the product of the real voltages. Consequently,

in any case such as this, the notation "Re..._" will be inserted- to describe

the operation precisely.

Since a(x) and b(x) are identically ero fcCr X L /2 aid Ix-1>L-/2rdspetvely,
A, Al-

it can be seen from Equations (1) and (2) that A(u) is the Fourier transform

of a(x), while B(u) is the Fourier transform of b(x). Consequently we can use

the shifting theorem to show that if for example, a(x) is changed to a(x) e-jusx

the pattern becomes

I

A(u-u ) = - [a(x)e jUsX] e dx . (3)

$ SmO
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The pattern can be shifted or scanned by introducing a progressive phase shift

of u = B sin e radians per meter across the aperture. This is called5 5

electrical scanning and will be the only type considered in this thesis.

It also follows that the inverse Fourier transforms of A(u) and B(v) are the

weighting functions

-1 _• -jUx

a(x) - A(u)e du (4)

and

b (y) f-00 B(v) evy dv. (5)

It will be observed that these antennas are eseentially "one-dimensional"

since they are described by one-dimensional aperture and pattern functions.

In physical (three-dimensional) space the angle O = constant describes a cone

whose apex is at the origin and whose axis is the x axis. When the antenna

is receiving, all incident signals whose propagation vectors are parallel

to any generator of this cone are indistinguishable by the antenna. Their

phasor sum, as "seen" by the antenna, is taken as the field of "a source"

"tt should be noted that in practice, electrical scanning is complicated by
a number of factors. For example, suppose the antenna is matched to the load
when its pattern is beamed in the broadside direction (u = 0); then in order
to scan the pattern to the u = v direction, a progressive phase sbift, which
of course changes the aperture's weighting function, must be introduced. This
will, in general, result ina mismatch between the antenna and the load. The
mutual impedance effects of the antenna elements also complicate the analysis
of electrical scanning. Thus in Equation (3) we have hopefully assumed that
these impedance problems have been solved and we can perform an ideal scan of
the pattern in the u domain. However, when considered as a function of angle
o the pattern becomes distorted when scanned.
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in the 6 constant direction. In addition, by thinking of 5 as the propagation

vector 1, which indicates the direction as well as the frequency of the signals,

we see that u = 1 sin E is actually the three-dimensional scalar product of 3

A
with a unit vector x parallel to the antenna axis.

a A
u = 1 . x = B cos (r/2-0)

or

u = B sin 6. (6)

The two-dimensional counterparts of linear antennas are planar antennas whose

elements are located, for expmple, in the z = 0 plane of a cartesian coordinate

system. The one-dimensional Fourier analysis of linear antennas can be extended

to these two-dimensional antennas with the transform coordinates being given by

x, y, and u = B sin 6 cos 9, v = B sin 6 sin V. In this case the propagation

vector can be represented as a point on a sphere whose coordinates are (P8,,9)

and by analogy with the one-dimensional case we have

u =8' x = B sin e cos (,

(7)

v = B sin 6 sin (P

In Appendix A is a more detailed account of the relation between the three-
dimensional physical space and its projected counterparts in both one and two
dimensions.

I
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Admittedly, such antennas are of much greater practical value than linear

antennas. However the method of analysis is essentially the same for both

and for simplicity of notation we will restrict ourselves to the one-

dimensional case. Generalization to the planar antenna of the results

obtained is quite straightforward.
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3. DESCRIPTION OF THE SOURCE DISTRIBUTION

In almost all cases of practical interest the exact nature of the

source distribution is unknown; if it were known exactly a priori, it

would never be necessary to build an antenna to measure it. However, we can

make some reasonable assumptions about the distribution which are cteduced

from some of its known physical properties. Furthermore, the statistical

descriptionwhich proved so useful in communication theory3 ')4 will be used

here. The basic concepts of th&s Pype. of approachuare embodied in the

theory of partial coherence as developed by Born and Wolf and Parrent15 16.

3.1 Assumptions

It will be assumed that the source distribution possesses the

following physical and statistical properties:

1) The sources are remote from the receiving antenna and fixed in

space during the observation.

2) The direction of "a source" is given by the single parameter

u = P sin 0.

3) In the time domain the sources are stationary; they emit random

signals whose statistical properties are invariant under a shift

of the time origin4 2 .

4) The sources are ergodic; the time averages of various quantities

are equivalent to their mathematical expectations or statistical

42averages

5) The signals emitted by the sources are described by zero-mean

complex random variables with statistically independent real and

imaginary parts,
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6) The signals from sources in different directions are not neces-

sarily statistically independent.

43
7) The statistics of the signals are gattssian

8) The signals are quasi-monochromatic. The

bandwidth 2 A w is much less than the carrier frequency wC"

The iabwaepropertiep constitite anIacceptabl§ description of many

sources encountered by the antenna engineer. For example, remote

communication transmitters, radar targets, radio stars, and even earth

satellites, produce signals whose general description is given above.

Since the sources are remote, the field due to each is incident on

,the antenna system in the form of a plane wave. The RF field at time t,

at the origin of the antenna system (see figure 1), which is due to the

source in the u direction can be written as

jW 0t
e (t,u) = V (t,u) e ' (8)

where the complex scalar function, e (t,u), can be thought of as one of

the components of the electric field vector due to the remote source, i.e.,

the component to which the antenna elements respond. V (tu) is the com-

plex modulation envelope of the carrier signal at frequency W 0 and is theo

zero-mcan random variable with independent real and imaginary parts men-

tioned above. This signal contains the desired information anout the

source. Accozdingly, letus suppress the carrier factor in Equation (8) and

focus our attention on the coherence properties of V (tu).
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3.2 Coherence Theory

Following Born and Wolf , we define the complex degree of coherence

between the fields from the source in the u direction and the source in

the v direction as

*

'' (1u V(t,u) V (<-T v) U (9)

<1jv (t,u)j2 > j

where < f(t) ? denotes the time-average of f(t), i.e.,

Sf-(t) > =T> f (t)dt. (10)
-T

One signal is delayed by T seconds relative to the other before their

Hermitian product is formed and time-averaged. The normalized form of

this average is V (TUv) and it can be easily shown that

0 I V (T.uv)j.$1 (11)

"?Both u and v are independent running variables in the P sin Q domain, i.e.,

we could write u = sin 0 and v = P sin 0 . They should not be confused
with the orthogonal coordinates u and v in The two-dimensional antenna
case.

* Jw t
More specifically, Born and Wolf use the total complex phasor V(t,u)e'

rather than just the envelope V(tu). Their complex degree of coherence
differs from Equation (9) by an RF phase factor e LoT.
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If ly (T,u,v)l = 0, for u p v, the two sources are completely

incoherent while if ly (r,u,v)I - 1 they are completely coherent.

Note that y (r,uv) is a function only of the difference T. of the

*
time arguments of the two field phasors V (t,u) and V (t-, v). This

is a consequence of the stationary nature of the sources, Let us

define

T r, u,Pv) < V (t, u) V (t-Tv) > (12)

to be the mutual coherence function of the source distribution

For T = 0 and u = v) this function is real and is proportional to the

average power radiated by the source in the u direction toward the

antenna, i.e., it is a measure of the temperature brightness of the

source.

In practice it is the temperature brightness of the two-dimensional

distribution of remote sources which we wish to measure. Appendix A

is devoted to a description of a planar array which can measure such a

distribution. The effect of the element pattern and of changing

variables from the (uv) domain to the (0,4) domain is considered.

Nevertheless, such an analysis is simply a generalization of the one-

dimensional case which for simplicity of notation we are considering in

the main body of this thesis.

Since we have assumed that all of the sources are remote, they must

Born and Wotf define the mutual coherence function as r (Tu,v) =
T (T ,u,v) e •o
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lie in the so-called visible range of the antennas. Consequently we

can write

V (tu) 0 0, for lul > P,

y (T,U-V) 0, for lul > P or jvj > P, (13)

and T1(TCr1uv) ~0 for (u>P or jVI>P.

In the terminology of distribution theory '4'46we say tat 'jor,ujv) and

T C(, u, v) have a finite support in th euv domain while V (tu)ls

support is finite in the u domain.

3.3 Fourier Analysis

3.3.1 Time Domain

Since V (tu) is a sample function of a stationary random process ith.;

inverse Fourier transform in the time domain does not exist, i.e., V (t,u)

is not absolute-square integrable;

lim JT TV (tu) I 2dt = (14)T --- ), o -T•(4

Howeverthe complex mutual coherence function, T (Tu,v), which may be

written as
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T (T, UV) = -limr 1 T TV (t,u) V* (t-Tr,v)dt (15)
T( =T-,Coa 2T -T

does exist. This means that there is a finite average cross-power be-

tween the signals from the u and v dir~uLions, as DbgbrVG'tt the #ntenna

system's origin.

Thus we define the cross-power spectral density or power spectrum

to :tp the, icye~rse'Ykourier --trabti-ntr -of T (ru~v),

(Cu,v) T (Tu.,v)e JEA1 (16)

-00

It also follows that

I00*T (T, U, V) = i_ • . . . '
T ((, u=, v)e ddw. (17)

-00

3.3.2 Space Domain

Because V (t~u), as a function of u, has a finite supporm

(V (t,u) A 0 for lul >j3 ) and is square integrable, it is possible to

define its inverse Fourier transform in the space or spatial fr.l-: 4ncy

domain. Thus we let its spatial frequency spectrum at time t be
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00

V (tx) X - J V(t,u)ejuxdu

P V(t,u)e eUXdu 
(18)

The designation "spatial frequency spectrum" is used as a term which is

analogous to "temporal frequency spectrum" in the time domain.

Physically, v (ty) is the complex envelope of the field which exists at a

point on the x axis which is y units from the origin (see Figure 1). This

field is the integral of all the plane waves from the remote sources

j uymodified by the phase factor e On the other hand we can recover the

complex field due to the source in the u direction as follows

V (t,u) - f f v(tx)e-jUXdx (19)
- 00

Let us define

(Tr, x, y) = (t: x) v (t-T,yj (20)

to be the mutual coherence function between the field envelopes at the

points x and y. If we substitute Equation (19) into the above expression,

there results
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. (T3x,y) = i fP V (t,u)eJUX1du 0p V (t-T v)eivY d> (21)

-- -- [

iff (t)tu) V (t-rv}7v e dudv
-pf-p (22)

or

- (fT J(ux-vy)

S(T',x,y) 2r1 , u v)e dudv. (23)

Thus for a given time delay T- the spatial frequency Spectrum---'

of T(, u,-v) is given by the mutual coherence function ,(T x,y) as defined

by Uquation (23).

3.3.3 Combined Time and Space Domain

Using Equations (16) and (23) we can immediately define the combined

temporal and spatial spectrum.:of T(&,ur.v) as

tWndxY) = f f T(r,uv)e (1 crUX+VY)drdudv (24)

and of course the inverse is
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00j (Qxr-ux+vy)
T(T,u_,v) fJ J t (C x, y)e dwodxdy. (25)

* i --

Note that the argument of the exponential function in each transform is

-+ýW +ux -vy). The negative sign associated with vy occurs because the

mutual coherence functions are expented values of a Hermitian product,

i.e., the product of one complex function and the complex conjugate of

another. This taking of the conjugate gives rise to the negative sign as

can be seen in Equations (20) to (23).

3.4 Special Limiting Cases

3.4.1 The Coherent Limit

The limit of complete coherence between sources in the u and v direc-

tions has been defined by Parrent lto mean that

I - (r,u,v) I = 1 (26)

for all values of T. However, Parrent has shown that only a strictly

monochromatic source distribution will satisfy, Equation (26). ThO mutual

coherence function of such a distribution can be written as

T (C,u,v) = V (u) V (v) (27)
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where V (u) is a fixed amplitude and phase factor associated with the

source in the u direction.

In practice one can at best deal with quasi-monochromatic signals

for which the power spectrum t (U3,u,v) is practically zero except for

VOk A w where A W) <<< (. In such a situation one defines a coherent
15

quasi-monochromatic source distribution to be one for which

T (v,u,v) =V (u) V Cv), for (28)

21

The mutual coherence function is independent of T (for 7 <<2----), and

separable into the cartesian product of two functions V(u) and V (v)

which are complex conjugates. Since T (T,u,v) is separable for small T

it follows that the spatial frequency spectrum is also separable.

(T x,y) = v (x) v (y), for << 27 .(Zl• "(29)

Thus for small values of T, the coherent quasi-monochromatic distribution

behaves as one which is strictly monocromatic.

3.4.2 The Incoherent Limit

Complete incoherence between the sources in the u and v

directions is characterized by

T (T, u,v) = T (T, u,u) 6(u-v) (30)

where 6(u) is the Dirac delta.
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The mutual coherence function is non-zero only when u=v, in which case

we obtain the self-coherence or autocorrelation function of the source

in the u direction. The spatial frequency spectrum of the incoherent

distribution is

(T ; Qxy) f T (r,u,u) 6(u-v)e (ux-vy) (31)

or

Sjju(x-y)

(T I x-y) -- jM T (T Uu)e du (32)271_

The spatial frequency spectrum for inooherent. sources is a function only

of the difference, x-y, of the spatial frequency coordinates. If we let

x-y = z we can define a one-dimensional spatial frequency spectrum as

Jut

I~ (-jz -P ZfI 1 T (T, u)e du (33)

where

T (TU) = T (T,u,u,)

S2I (34)

in the incoherent dase. In addition, one can use Equation (12) to show
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that T (o,u,u) and hence T (o,u) are real and non-negative functions of

u. Physically, this means that the average energy flow from the remote

sources is non-negative.
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4. THE GENERAL THEORY OF CROSS-ce"RELAt TON

Before turning our attention to the specific case of the two-antenna

cross-correlation system, we will consider the cross-correlation of two

arbitrary narrow-band RF signals. We will show that a complex cross-

correlation function is associated with these two real signals. Then we

will consider in some detail a practical RF cross-correlator; this device

can be used to measure the real and imaginary parts of the complex cross -

correlation function.

When the two signals are indentical the cross-correlation becomes

an autocorrelation. If the two signals are combined in reverse order,

another cross-correlation results which is the complex conjugate of the

original. The two cross-correlationsand the two autocorrelatiozs can.

be arranged as the elements of a 2 x 2 matrix, the correlation matrix,

which completely characterizes the correlation properties of the two

signals. This matrix is analogous to the well known coherency matri' 5 .

used in the study of the polarization of light.

Finally, we will return to the cross-correlatOr to consider the

practical problem of taking finite time-averages instead of the infinite

time averages which are formally specified in the definitions of the

correlation functions.

*See Davenport and Root 43, page 60.
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4.1 The Cemple.tCkos-sCorrelation Faniction

Let us consider two RF voltages whose cross-correlation function is

to be determined. We can represent them by

a(t) = Re A(t)te (35)

iw t

b(t) = R4>B(t)e 0 (36)

where AMt) and B(t) are slowly varying complex modulation envelopes. The

cross-correlation of the two real voltages is, by definition,

T

RHAB (T) = lim i_, f a(t) b(t-T) dt (37)
TB Týoo -'-T

In complex notation this becomes

R () 41- Re /5t) B(t-r)e>

1j 0 (t J~t> (38)
+ .Re jA(t) t )e >(3

The first term on the right side of the above equation is the double
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R AB(T) = RAB (T)e 0 (43)

or

RHr(T) •rAft) B*(t-r)2 (44)

This, of course, is a shift of the cross-correlation spectrum from

S0 to 0 and removes the RF "carrier" factor, e , from the correlationo

function.

We see that a complex cross-correlation function is associated with

any pair of real, narrow-band, RF voltages. In the following section we

will show that the real and imaginary parts of this complex function can

be measured by a system employing synchronous detection.

4.2 The Cross-Correlator

We will now describe a device which will cross-correlate the two

real RF voltages a(t) and b(t). In practice the Compound Interferometer 2 2

employs this type of cross-correlator. Now, as is shown in Figure 2, one

of the signals, b(t), is delayed by the variable amount 7:before it is

fed into a frequency bhifter. The frequency shifter increases the

carrier frequency of the signal from w0 to w0 + 03 with 0 >>> 03 The

output of this device can be written as
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VOLTAGE
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o(t) b(t)

SYNCHRONOUS DELAY
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Figure 2. The Cross-Correlator.
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b(t-T () W) = Re B (t-T)e •-Cw+ (45)

This signal along with a(t), enters a mixer which forms the square of

their sum,

[ a(t) + b(t-TUI) ] 2  =

I Re [A2(t) + B2 C(tT)e T -2W1 t] +At B(t-T)e T -W1t)] ei2&Jot}

1 0 A +~ ~ A't B~- wT)e

+.! Re IA(t) + IB(t-T)2 + A(t) B*(t-T)e 0 1 (46)2 L

The first term on the right side of the above equation is the double

frequency component of the mixer output. If a band-pass filter with

center frequency at (0 = W I is used to reject this signal as well as the

signal whose spectrum is centered at Wo = 0, we obtain as the filter out-

put

VBp(t) = Re A(t) B* (t-r)e 0  -4t (47)

This is possible only if w 1> A (o where A w is the bandwidth of the

modulation signals A(t) and B(t).
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This filtered signal is fed into a synchronous detector along with a

reference signal given by

jWl t

V REF (t) = Re e (48)

The detector output is the low-frequency component of the product of

these two voltages. It can be written as

1 *W wr0
VSD (t) = j- A A(t) B* (t-.T)e (49)

Finally0 this signal is fed into an averaging filter, if, for

simplicity, we assume that the averager has the following ideal, (but

physically unrealizable), impulse response.

v W t= m- I for 0 < t < 2 T, (50)0°(t 2T '

= 0 , otherwise,

the averager output , and indeed the system output, after2T'seconds of

averaging, is

-, 1 Fr2T-*
(T, T) 2 Re L 2T A(T-t) B * T- % )dt1 e 9WOT (51)
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Letting t = T-tl, this becomes

R (TT) Re 1 e A(t) B (t-r)dte (52)

In the limit as T-'cc the system output becomes

F T1im j lim 1
T---oAB: C T = • Re . A(t) B (t-r)dte 0j

SRe (t) B*(t--)T e >

Comparing this result with Equations (39) and (41) see that

-t -t 1 --

lim R CTT) = Rt AB(r) - Re ft (5) (54)
T *) .0 AB ) AB 2 KAB (r

where R AB(T) is the RF complex cross-correlation function. Consequently

by time-averaging the output of the synchronous detector we obtain half of

the real part of the RF complex cross-correlation function which is defined

by Equation (42).
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To obtain the imaginary part we simply perform the same cross-

correlation of the two signals a(t) and b(t) except that this time they

are taken in phase-quadrature. More specifically we cross-correlate

jw t

a(t)= Re A(t)e 0 (55)

and
J (W t + W2)

b' Ct)= Re B(t)e 0

jWJ t
-Re j B(t)e (56)

Letting

B' (t) = j B(t) (57)

the correlator output, as T--oo, is

AB' (T) Re tVA(t) BI*

which becomes

A () =kIm A(t) B*(t-T)7 e (59)

AB 2 f
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Consequently we can form the complex sum

RAB (T) = 2 AB (T) + JR AB (j) (60)

= <(A(t) B* (t-0)>e o (61)

to obtain the complex cross-correlation function of the two complex RF
JcA t Jw t

signals A(t)e jW and B(t)e . As before, we can multiply both ides

of Equation (61)by e and obtain

RAB () = < A(t) B*(t-r)Z (62)

which is the complex cross-correlation function of A(t) and B(t).

4.3 The Autocorrelation Functions

The complex autocorrelation function of say AMt) is defined to be

R A T() = lim fT A(t) A*(t-T) dt
T--ro 2T =T

= <A(t) A* (t-T)>z (63)

It can be measured in the same manner as the cross-correlation function,
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R AB() To do this, we divide a(t) into two equal parts and "cross-

correlate" the two signals as if they were distinct. The complex

correlator output, except for the factor 1/4, will be R AA(T), as given

by Equation (63) above. The complex autocorrelation function of the

second signal B(t) is

RBB(T) = <B(t) B (t-T)1 (64)

and it too can be measured by the correlator which is described in the

preceeding section.

4.4 The Correlation Matrix

Let us consider the two signals A(t) and B(t) as the elements of'.the

following two-dimensional complex vector

A(t)

(t)= [ (65)

B(t)

The correlation matrix associated with the two signals is defined as

R(T) < (t) (66)
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where the dagger, +, indicates the transpose conjugate of the vector.

Using Equation (65) it can easily be shown that

(<At) A* (t-T)>7 <BA(t) B* (t-)>

R (r) .cSB(t) A*(t-r)7> cB(t) B jtT) (67)

and in view of Equations (62), (63), and (64)., this becomes

R(T) = j (68)

LR BA (T) R BB (T) -

The second cross-correlation function, R A (T) is related to "AB(T) by

Hermitian symmetry

R AB(r) = R BA (-T) (69)

The correlation matrix has as its four elements the four correlation

functions that can be obtained from the two signals A(t) and B(t). It

completely characterizes the correlation properties of these signals.
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4.5 The Effect of Finite Averaging Time

In practice, of course, one cannot go to the limit of the infinite

averaging time which is formally required by the correlation integral

(see Equation (37) ). It is of some interest therefore to investigate

the effects of a finite averaging time 2T, on the system output, The

latter generally will differ from that which results in the limiting

case of an infinite time average. We will obtain expressions for the

expected value and variance of the complex cross-correlation system output

(31)as functions of T. In an earlier analysis Linder has dealt with the.

effect of finite averaging time on the statistics of the real output of

an RIF correlation detector, Since what we present here is intended as

only an outline of the problem we refer the interested reader to

Linder's paper for a more detailed analy:iis°

Assuming that the signal voltages a(t) and b(t) are ergodic random

processes, we can write the expected value of the complex system output

after 2T seconds of averaging as

E CT T E A(t) B(t-T)dt (70)
RAB 2TJ

-2 E A(t) B (t-T)} dt (71)

-E I A(t) B (t-i) (72)
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where E ff(t01 is the expected value (mathematical expectation) of f(t).

But by the ergodic hypothesis we have, with probability 1,

E {A(t) B(t-r)} = <A(t) B (t-T) > (73)

Consequently, in view of Equation (62), we can write

E RAB(T ) = RAB(') (74)

which is the desired output obtained after an infinite time average.

Thus the output error has an expected value of zero, which is independant

of the length of the averaging time.

We will now determine the system output variance, a real positive

number which can be written as

Ca2 AB(T.r) = E 1% AB (Tltl j) B I¶RAB (T;T);r I (75)

It can be thought of as the fluctuating a-.c. power of the output which

2
exists along with the desired d-c. power, IRABr(T)i We can write the

first term on the right side of Equation (75) as
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F~ dt t dtl )

L T TE Jt]) (tl- )A (t2) A(t)- tldt (76)

EjA(TrI 1- 1 2 2L4T212

_T -T

Until now the probability distribution of the random signals has not

been specified. It could be quite arbitrary. However if the signals have

"gAussian joint probability distribution it can be shown. that

E A(t1) B (ti-r) A (t2 B(t 2 -T)1

E A(tI) B*(t 1 -r E A(t 2 ) B(t 2 -r9

+ E (t1) A*(t 2) E IB(t1 T) BC(t 2 -r) (78)
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and by using the ergodic property of the signals we have

E (ti) B (t1-T)A (t 2 ) B(t 2- =

2 2

R (T) R A() + RAA(t Its) R CtBB1-t ) f79)

Substituting this result back into Equation (77) gives

E fIR (TT) 12) -L T T RAA(tl-t2) R (t-t)dtldt
L AB J 4T2 LT A 2 B 12 1 2

+ I AB(C) 2

In view of Equations (74) and (75), the variance can be written as

2 =1 TTTT *t2) R* (tl-t2) dtldt
B AB(TT) 42 BE 12 182

AB ' -- ~ RMA(tl~t)R C t)d t(1

Letting tI-t 2 = t it can be shown that we can reduce the above double

integral to
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2 t 2
Cr (T -r) = Re (7fj~ 11(t) R*B(t)dtl (82)
AB f2

Note that this is independent of the time delay T.

The above expression is clearly dependent on the nature of auto-

Qur±uaiuin .unctions "AA (T) and R BB(T) If. for analytical purposes.

we assume that the signals' power spectra are both uniform in the band

I I < Wý and are zero outside, then

RAA(T) = RBB(T) = RR sin A W T (83)

The output variance is

Oa2B(T, 7) = R2-2 (i- t) si A wt2 t(4
AB = dt (84)

which after some manipulation can be shown to be

2 2

CT 2AB(TPT) = R Si(4 A wa T) +AB ' o

2 A WT

2
R i(4Z W T) -I -Y -In(2T)h 2A w cos 4A w T (85)

2 [ 1 4A W-T2(A• w T)2
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where Si (x) and Ci (x) are the sine and cosine integrals respectively,

and y =.5772... is Euler's constant. This is a rather complicated

result, but for large T we have

O2 AB (TYr) R 2 S (4/Y T) IT 0 (86)

- ~ I0 IW
T•>2T2A• T 4t4'T

The output variance is inversely proportional to T for T large.

Although this has been shown for the particular case of uniform power

spectra it can be demonstrated that even for arbitrary power spectra

2AB (T) T) is inversely proportional to T when T >> -'

On the other hand for T small, (T << ) the correlation functions

in Equation (82) are essentially constant over the entire range of

integration and we can write

2R(T)T) R AA(o) RB3 (o) (87)

T << 2_ff

which for uniform power spectra in the interval IwI. AWP gives

See for example, Schelkunoff Applied Mathematics for Engineers and
Scientists,' Chapter 18, Van Nostrand, 1948.
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("2(T, T) R 2 (88)
1 2 --
T << -A(O

Since it can be shown that

I R.,(Tr)jI < (RA(o) RB co) (89)

it follows that the standard deviation of the system output for small T

is equal to or greater than its expected absolute value. For meaningful

results one must therefore take reasonably long averaging times. Although

we have considered only the statistics of the output of the cross-

correlator it is abvious that the results apply to the autocorrelation

outputs also. Thus

E tAA(TT)1 = RAA(T) (90)

and

o 2A(T,"T) 2 (1- iR(t)i dt (91)AAT 2T' IAA I

Similar expressions obtain for the autocorrelation of b(t).

See Davenport and Root 43 , p. 61.
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5. THE TWO-ANTENNA CROSS-CORRELATION SYSTEM

We will not consider the cross-correlation of the voltages obtained

from the two linear antennas when they are excited by an arbitrary dis-

tribution of remote radio sources. It will be recalled that the source

distribution can be described by its mutual coherence function T(Tju, v).

We will show that the two-antenna correlation system can measure this

function. The patterns of the two antennas are scanned independently,

one in the u direction and the other in the v direction, and when the

voltages from the antennas are crnss-correlated we obtain a complex cross-

correlation output function which can be written as

RAB(TuV) = T(T,u,v) * CAB (T, u, v) (92)

where * is the symbol for convolution (in three dimensions), and

C AB(T u v) is the complex system function which will be defined in

Section 5.2.

A Fourier anaiysis of this output will be made and from the

analysis we will be able to define a principal solution TAB ' u'v) for

the cross-correlation antenna system. This principal solution is a

generalization of the one-dimensional principal solution T (u) which was0

first prnposed by Bracewell and Roberts8 in connection with radio

astronomy.

5.1 Description of the Antenna Voltages

A diagram of the two-antenna cross-correlation system is shown in

Figure 1. Before entering the cross-correlator, each of the terminal
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voltages a (t.,u) and b (tu) of the two linear antennas is passed
0 0

through narrow-band RF filter The two filtered signals Can be

represented by

A(t~u) =f V(t-tlu 1 ) A(U -U)du1 A(tl) dt 1  (93)

B(tv) =f0"fP V(t-t 2 , VI) B(V 1 -v)dv 1  B (t 2 )dt 2  (94)

0 -P

where fA(t) and fB (t) are the envelopes of the impulse responses of the two
jw t

filters and the RF carrier factor e has been suppressed. Note that the

patterns of antennas A and B are scanned independently in the u and v

directions respectively. The source density function V(tu), weighted by

these pattern functions, is integrated over the visible range to yield the

terminal voltages which then are convoluted with the filter response

functions. If we define the mirror image, or reverse, of a function to be

g(x) = g(-x) (95)

we can write the above equations as

*We have tacitly assumed that the frequency response of each antenna itself

is essentially constant over the bandwidth of its RF filter.
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A(tu) = V(t,u) * fA(t) A (u) (96)

V
B(tv) = V(tv) * fB(t) WB(v) * (97)

The convolution sign applies to both Variablds, t and u in Equation (96),

and t and v in Equation (97).

These two equations show that each antenna with its associated RF filter

acts as a combination spatio-temporal frequency filter of the two-

dimensional space-time signal V(t,u). As is indicated in Figure 1 it is

the two ouLput voltages from these filters that will be cross-correlated.

5.2 Cross-Correlation of the Antenna Voltages

Comparing Equations (35), (36) and (96), (97) we see that the

complex cross-correlation output function =Zo the antenna system can be

written down by replacing A(t) and B(t) by A(t,u) and B(tv) respectively,

in the various correlation equations. Thus the complex system output,

after 2T seconds of averaging, is

RAB (TT U V) 1 = T A(t, u) B (t--rv) dt (98)RAB(T I• ,) ; 2T T

and the expected value is

R AB(ruIv) = <A(t,u) B (t-TV)> (99)
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Substituting the expressions for A(t.u) and B(t,v) given by Equations

(96) and (97) into the above, we obtain

RAB, ,u,v) = (t u) * f-(t A(U) *(t-,v) * (t-T)B(v) (100)

u** 
(101)

=rr'ffrVt- )V fA-Ttl f (t )dt dt A(u-u )B (v-v )du dv
1'' 1f (2,<IIIIB 2 12 1 1 11

In view of Equation (12), we can write

<V(t-ti.,uI1) V*(t-T-t 2,- v1 = T(T-tl+ t2Vul v 1) (102)

and Equation (101) becomes

V V
RAB (Tu,v) = T(TUV) * AB (T) A(u) B(v) (103)
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where

fAB (T) = f A(T) * f1 (T) ' 104)

Thus we can write

R AB(r )u,v) = T(T )UV) * C AB(Tju v) (105)

where we have defined the complex cross-correlation system function to be

V V*,
CAB (mu,v) = f AB(T) A(u) B (v) Q (106)

Equation (105) is the fundamental equation of the cross-correlation

process. It shows how the system function CAB(T,u,v) operates on the

source function T(T u,v) , (by convolution in three dimensions), to give

the output complex cross-correlation function R AB(T, u, v).

5.3 1'ourier Analysis of the System Output

In a manner similar to that which led to the definition of the com-

bined spatio-temporal spectrum of T(T,u,v) as given by Equation (24) of

Chapter 3, we define the spatio-temporal spectrum of the complex cross-

correlation system output RAB(T',u,v) to be
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r - Oo 00o (cor- ux+vy)

rAB(W, x, Y) 1 JJ J AB(ru,v)e dTdudv. (107)(2•)3/2 ff RB

00 io -00

Substituting the expression for RAB (T,u,v) of Equation (105) into the above

gives

(108)COgo 00g

rAB(W.xy) =13/2 f f T(TUu,v)* CAk(+,uv)e-J (J -ux+vy) dTdudv.

-0O -00 -00

We can invtk1 the convolution theorem to write

r AB(W,x, y) =(21)3/2 t(w;,y) CAB(W.Vxy) (109)

where CAB (j Py) is the inverse Fourier transform of the system function

C AB(T uv), Using the expression for CAB(T,u,v) given by Equation (106)

we obtain

¶ABXY) 100 00 00 9

AB(27r)3/2 f f f A 1 B~~Y~ 3v
-00 -00 -00

e-j(W T-uxivy) dTdudv (110)
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By again using the convolution theorem we can write

cAB(w,x,y) = 42 F A() F B(w) a (x) b (y) (Iii)

where F A(w) and F B(), the inverse Fourier transforms of f A(T) and

%(T) respectively, are the frequency response characteristics of the

two RF filters, and where a(x) and b(y) are the aperture weighting

functions of the antennas. Thus

2**
rAB,x,Y) = 47rt (W, x, y) FA(w) FB () a(x) b (y)

(112)

- (2ff) t~Wxty) CABw, x,y)

Equation (112) is the fundamental equation in the frequency domain.

It shows that the spectrum of the output is proportional to the spectrum

of the mutual coherence function wetghted by the system's frequency

response function which is fact6rable.

5.4 The Principal Solution

Our main purpose is of course to measure T(T,u,v), or equivalently,

Tts spectrum t(u,x,y). However, if the bandwidth of the RF filters

are both say 26x1 , it follows that F A() FB (W) - 0 for Iul > Lxa. The

system passes only those temporal frequencies of the source distribution

which lie in the narrow RF band lu-w i < tit. To investigate the

o

pass-bands of spatial frequencies of the system we note from Figure 1
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that a(x) 2 0 for Ixi > LA/ 2 and b(x) S 0 for Ix-1 1 > L•2 where LA and

LB are the lengths of the two apertures. Consequently, it is clear that

the Cartesian product a(x) b *(y) E 0 except when lxi < LA/2 and iy-4 C LB/ 2 .

In Figure 3 this region in the Xy plane is shown cross-hatched and

labeled Q -AB Note that the spacing I between apertures causes the

region to move away from the origin. Finally we can define a three-

dimensional region Q which delimits the spatio-temporal "aperture" of

AB

the system. This region is shown in the diagram of Figure 4. Strictly

speaking, since the functions F A() and FB W) are analytic in a half

4
plane , they are not identically zero outside of Q AB However in

practice there is negligible error in assuming that they are zero.

Now from Equation (112) we see that since eAB(w,x,y) is zero for

points outside Q AB the output spectrum contains information only about

that part of the spectrum t(a,x,y) which lies within Q AB This being

the case, we can define

r AB(Wx, y)
tAB(W&x,•y) = 2 - , for (wx,Y)W Q AB

4W2 CAB (W P ,Y)

= 0, otherwise, (113)

where (%,x,y) f QAB means that the point with coordinates (wx,y) belongs

to the point set QAB*

The Fourier transform of t AB(,x,y) is the principal solution
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SQAB

LB

Figure 3. Spatial Frequency Plane a)f the Cross-Correlation Antenna
System with the "Aperturet QA Shown Hatched.
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QAB•

0)

Figure 4. Combined Spatio-Temporal Frequency Space for the
Cross-Correlation System in which the Region QAB
is Shown as a Rectangular Parallelpiped.



54

TAB (TIUPv) 3 ft(AB (wi, x. y) eJ( T-xu+yv] dwdxdy. (114)
(270) '2

-00 -00 -00

It is a filtered version of the true distribution T(T UPv) with no

components of frequency which lie outside the region QAB. However,

those components which are present are identical to those of the true

source distribution.

5.5 Direct' Measurement of the Principal Solution

Equation (109) indicates that the output spectrum rAB (wx,y) is

generally a distorted version of the true spectrum t(a,xy). Because

the system characteristics FA(co), FB(W), a(x), and b(y) are not only

zero outside of Q AR but can also take on arbitrary values inside the

regdon, it was necessary to divide the output spectrum by the system

spectrum (see Equation (i13) ) to recover the principal stlution spectrum

t AB (, x, y).

However, if the system characteristics were all uniform within

QAB, i.e., if

CAB(Cxy) = qB(%xy) = q-B, for (w,x,y) f QAB3 (115)

= 0 , otherwise,

where qAB(w,xly) is defined as the system function which is uniform in

QAB' then from Equation (113) we have
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rAB( Wxy) = t(w, x,y), for (w,,xy) E QAB' (116)

= 0 A otherwise.

The Fourier transform of q(w,xy) is

QAB(T,u,v) = kt2LALB sine sine g sine (7) eJAv (117)

where we have used the "sine" notation of Woodward48

sine x = x
Vx

Comparing Equations (106) and (117) we see that

(r)= 2 & sin2 sine (118)lAB it •

and

fA(t) = fB(t) =-2 ka sine (Pt) (119)

The responses fA(t) and B(t) are physically unrealizable since they are

non-zero fort <0. However, if we are willing to accept a delay of T
21

seconds, with T >>- j between the input and the desired output, then to
1 tP O'.

a good degree of approximation the response functions

*See, for example, Davenport and Root 43, p. 174.



56

fA (t-TI) = fB(t-Tl) =A1AW sincl+ (t-Tl)] (119.a)

can be synthesized. The two types of response f(t) and f(t-TI) are shown
At A 1

in Figure 5. Since f A(t-T ) 1 0 for t < 0 there is usually negligible

error in having the actual response envelope identically zero for t < 0.

Consequently, if the system impulse response envelopes and patterns

are given by Equations (117), then the spectrum becomes (approximately)

2 •J (T* -TI )

47 F (o) F (o) a(x) b(y) = 47 4*- -- , for (,x,y) QA
A B 412 %fo AwB

(120)

=0, otherwise.

The phase factor 0e is due to the time delay necessary to insure a

physically realizable system. Since we have the Hermitian product of

the two filter spectra, F (w)e and F (w)e , this phase factor
A B paefco

cancels out in the final result (a rather fortunate occurrence). It is

interesting to note that the analogous condition of physical realizability

does not obtain in the space domain. The antenna pattern's reverse,

vA(u). is actually the response to a point source (spatial impulse) in

the u = 0 direction. Since most patterns are real and have even symmetry,

i t is clear that A(u) 0 for u < 0. Physically, we might "explain"

this by saying that we can go forward and backward in space but only forward

in time, However in practice there is a very important physical condition

that must be satisfied in the spatial domain, namely, the antenna must be

of finite length, in a sense this is an even more stringent
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condition than that in the time domain. It allows the aperture function

to be non-zero only over a finite region (e.g., IxI$ LA/2), whereas the

impulse response of a time filter can be non-zero over the semi-

infinite region t > 0.

Returning to the system with a uniform frequency response in the

region Q we see that to a good degree of approximation (if T >> -)
AB i1 Lio

R AB(T uv) AB(T)u v)

(121)

=T(T,u,v) * Q AB( ruv)

which is the principal solution.

5.6 Cross-Correlation System Outputs for Coherent and Incoherent Source

Distributions

In Equation (28) in Chapter 3 it was indicated that a coherent

quasi-monochromatic source distribution has the following mutual coherence

function,

T(T,u,v) = V(u) V (v), for T << 2« /,

where :fto is the bandwidth of the signals and satisfies the inequality

J << w . Equation (29) indicates that the spatial frequency spectrum of
o

the above function is



59

t (T,xjy) = v(x) v (y), for T << 21•IA/ .

Both the mutual coherence function and its spatial frequency spectrum

are factorable for small T.

Now the system output in the presence of such a distribution is

R T ,u V * Cr

RAB (TJu, v) = V(u) V (V) * fAB(T) A(u) B(v) (122)
217

= K V1(u) (UAu) V (v) * B (v) (123)

where K is a constant. The output function is independent of T and

separable (for T << 21r/ZA).

Consequently we can. write the spatial frequency spectrum of the

output as

SAB (T Xy) = K 217 V(x) a(x) vc(y) b*(y) (124)

T <<

i.e., thisspectrum is also separable and independent of T for small T.

If the source distribution is incoherent then we can write (see Chapter

3,,Equation (30)),

T(Tuv) = T(T,u,u) 6(U-v)

as its mutual coherence function. The corresponding spectral density

function is
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t (w, x, y) = T2u) 3(u-v)ei (Wux+vY) dTdudv

or

t(2x-y) = 13/2 T(T, u, u) e-J[(-r-u(x-y)] (125)

which is a function only of the differenceC (x-y), of the spatial frequency

coordinates. If the system has a uniform weighting function in the region

QAB' then its output spectrum, and the principal solution spectrum, will be

tAB (L, x-y) = t((,x-y), for (w.,x,y) f QAB'

= 0 , otherwise, (126)

which also is a function of the difference, x-y, of the spatial frequency

coordinates.

Combining both the coherent and incoherent cases we can make the

following statements:

a) If the source distribution is coherent the spatial frequency power

spectrum is separable for T << 2T/ 6P.

b) If the source distribution is incoherent the spatial frequency

power spectrum is a function only of the difference, (x-y), of

the spatial frequency coordinates.
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In practice one can observe the spectrum only in the "aperture"

QAB" Although t(a,x,y) is an analytic function, and in theory can be

extended to points outside QAB by analytic continuation, it has been

shown49 that in the presence of measurement errors very little meaning-

ful continuation is possible. Consequently even if t(wxy) is

experimentally observed to be "coherent" or "incoherent" within QAB one

cannot be sure that it will continue to be so outside the aperture.

However from a practical point of view, if the spectrum, when measured

within QAB' satisties either of the above conditions, it is reasonable

to infer that the sources are coherent or incoherent as the case may be.

5.7 Simplification of the Cross-Correlation System for the Case of

Incoherent Sources

If the sources in different directions are incoherent, it is of no use

to point the patterns of the two antennas in different directions. Only

when the two beams are pointed in the same direction will there be

appreciable output from the system. Thus if we set u = v and substitute

Equation (30) into Equation (105) we can write

RAB (TI u, v) =T(T ) U, U) * CAB (T Yu )u)

U•v

10 T00(T -t,u vl V) 6 (UlV1 )f (t) A 1-u)B(u-v 1)dtdu 1dv1
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V V

=1•T(T-t U1, UI) f AB(t) A(u-u ) B (u-u ) dtdu . (127)

Using Equation (34), and letting RAB (T U u) =Aflii RAB('r u) we obtain

V ,'J,
RAB (Tu) = T(T,u) * fAB (r) A(u) B (u) (128)

as the two-dimensional cross-correlation output for the case uf an incoherent

source distribution.

We define the spatio-temporal frequency spectrum of this output to be

* '/*
rAB WZ) = 2t( Mz) FA (w) FB (w) a(z) * b (z) (129)

where z = x-y, (see Equation (33)). Since the system's pattern is now in

V
the form of a product of the individual field strength patterns AMu) and

V*
B (u), the spatial frequency spectrum is in the form of the convolution

V,
of the aperture weighting functions a(z) and b (z). Consequently, if the

aperture functions are uniform for Iz(<j-, and Iz-1!( - as is

shown in Figure 6a, then the spatial frequency spectrum a(z) * b (z) is

shown in Figure 6b. The spectrum is a trapezoidal function and weights
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more heavily the spatial frequencies near the center of its "aperture"

than those near the edges. This results in a distortion of the source

spectrum as "seen"at the system's output. Note also that the width of

the "aperture" of the system is given by the sum, LA + L of the aperture

widths of the individual antennas and is centered at z =-I.

In order to obtain a uniform spatial frequency spectrum one must use

22a compound interferometer , A diagram of the weighting functions and

associated spectrum of the system is shown in Figure 7. Instead of two

uniformly weighted apertures the compound interferometer consists of just

one uniformly weighted aperture and a simple interferometer. The two

isotropic elements of the interferometer are located at the end points

of the second aperture. Mathematically, they can be represented by

Dirac deltas and their convolution with the other aperture function results

in the uniform spectrum shown in part b of the diagram. The width of the

"aperture"-is also given by LA + LB and its center is located at z =-.

In Chapter 3 it was shown that in the incoherent case T(r, u) is a

real function. Consequently, its spectrum is complex symmetric, i.e.,

t(w,z) = t (-W.,-z)° This means that by measuring t(W.z) on the interval

21z+1 K LA + L ,we can automatically deduce its values on the interval

2]z- 11,< LA + LB This region is also shown in Figures 6b and 7b.

Finally, we can define a system "aperture" Q' for the incoherentAB

case which is analogous to the more general QAB of the partially coherent

case. Thus in Figure 8 is shown the combined spatio-temporal frequency

plane for the incoherent case with the region Q' indicated by cross-
AB

hatching.



N 65

N

wi

LIJ

z q.0

-4J

Qr. 4J 4

CD 0

.4r

0j0

$4

0 (D

41 4

+- *~ 4J0
$40

~4J 00

0

zz

0 .0

+ CJ



N

66

-4c

k 0

< 0

Cy

o

0a.

4-)

0.

* ..

_ 0 o0

/ 0 o°
/// p

p..

!U



67

In summary, we can say that an incoherent source distribution has a

principal solution spectrum which is a function only of the difference

z = x-y of the spatial frequency coordinates. Consequently, the problem

reduces from three dimensions to two and by pointing both antenna patterns

in the same direction (u = v) the system output also reduces to a function

of two dimensions, delay T, and beam direction u. A principal solution

can be defined whose frequency spectrum is complex symmetricr(t(z)
LA +LB

and for the above antenna system is identically zero for Iz-I#1I> 2

and IjwI< fla Indeed, it was this type of principal solution which was

first defined by Bracewell and Roberts18 in connection with the mapping

of the incoherent sources which are encountered in radio astronomy.
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6. THE CORRELATION MATRIX OF THE ANTENNA SYSTEM

It will be recalled that in Section 4.4 we introduced the correlation

matrix R(T) which is associated with the complex envelopes, AMt) and

B(t), of the narrow-band voltages a(t) and b(t). We will now show that

for the two-antenna correlation system we can obtain a correlation

matrix :R(r,u,v) which yields considerably more information about the

source distribution than the original cross-correlation function R AB(T, uv).

6.1 Cross-Correlation of Signals from Two CoincidentL Antennas

Let us consider one of the antennas, for example antenna A. If the

signal from each of its elements is divided into two parts, with

predetermined wcighting coefficients, one obtains two sets of signals

which can be combined adaitively to form two distinct output voltages

from the antenna aperture. In effect they are the signals from two

coincident antennas, A1 and A whose patterns can be independently

Scanned in the u and v directions respectively. These signals, after

each has passed through an RF filter, can be cross-correlated in the

same fashion as the signals from the distinct apertures A and B. The

complex cross-correlation function that results is

RAA(T,Uv) = T(',u,v) * C AA(TuyV) (130)

where

V, V *v
CCAA(Tu,v) = fAI(T) * fA2 (T) A I(u) A2 (v) (131)A 1 2
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A similar cross-correlation function of two outputs ftom antenna B

can be obtained and it is given by

R BB(T uv) = T(T u,v) * C BB(T,u,v) (132)

where

CBB(TPu,lv) = £ 1(T) * fB 2(T) B I(u) B2 (v) * (133)

6.2 The Correlation Matrix of the Two-Antenna System

By analogy with Equation (67) we can define the correlation matrix

of the antenna system to be

F RM (, u,v) R AB(T ;U IV)]
R(T, u, V) = R (134)

R BA (T, u,v) R BR(T ?Ulv)

LRBB

As before the cross-correlation function RBA(T,u,v) is related to RAB(TJu)v)

by the formula

RBA(T)UYV) = R*AB (-T, -U) (135)

Now just as in the case of R AB(TuJv), we can take the Fourier

transform of this correlation matrix and we obtain

I

it
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FrAA(Wlxy) rAB &J.x,Y)

r(Wx, y) rj(136)

LrBA (U.Sx, y) rBB ((,, x, Y)

where

rAA(Wlxly)= 412 t(W,xy) FA (w) FA 2* •) A 1 (x) a2 (y) (137)

B(wxy) = 4•2t(wy) FB(w) F 0(w) bfx) b2 (Y) (138)

BB ,,Y - 1~,~. B2

rAB(w,xy) = 4lT2 t(,xy) FA(w) FB* (() a(x) b*(y) (139)

=rBA (ca,y,x). (140)

Each of the elements of the frequency domain correlation matrix can be

non-zero only where the corresponding system function, e.g., FB (w)F2 (w)b (x)b2(Yý
1 B 2 1 2

is non-zero. Let us assume that the temporal frequency pass-bands are all

equal in size. We can then turn our attention to the spatial frequency

domain. Figure 9 shows the regions in the xy' plane where the four

distinct system functions are non-zero. Note that 4AB is the "aperture"

of the original cross-correlation system (see Figure 3). The three other

regions, QAAI QBBI and QBA' indicate the additional "apertures" of the

system.

6.3 Principal Solution

By analogy with the principal solution for the original cross-

correlation system giver by Rquation (114),-we can.oefinea-principal bol'ution
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for the correlation system as a whole to be the Fourier transform of

t 0 (W,x,y) = tMAA(,x Y) + tAB(W,x,Y)

+ tBA (w•xjy) + tBB(wIx, y) (141)

where

tA(toX, - rAA(2 %xY) if (Wx'y) E
tAA( y 4142 F (w)F* (w)a (x)a (y) (xy)

A 1 A 2 1 2

=0, otherwise. (142)

Similar formulas obtain for tABS(aJAy) , tBA(,WxYy),and tBB(aIxY).

Thus

P r P i Cw--xu~yv) ddd

To(Tuv) = j_ J_ I to(W,x,y) e jddxdy (143)

is the principal solution for the correlation system as a whole. Clearly

this solution gives us much more information about the source distribution

than does the cross-correlation system's principal solution as given by

Equation (114).

The special cases of coherent and incoherent distributions give rise

to the same type of outputs for this more general system as for the one

described previously.
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Finally9 it should be noted that if the two apertures A and B are

considered as parts of a single aperture C, and if two distinct signals

from this larger aperture are cross-correlated, as described in Section

6.1, then the output from this system will have a spatial frequency

"aperture" which is the same as that of the correlaLion matrix.

Consequently, the principal solution for the aperture C is the same as

the system solution given by Equation (143). Therefore, when mapping a

source distribution, it is sufficient to obtain a cross-correlation

function from the total available aperture. There is nothing available

in the cross-correlation of signals from parts of an aperture that is

not present in a cross-correlation of the signals from the entire aperture.
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7. COMPARISON OF THE CROSS-CORRELATION AND THE COhNENTIONAL ANTENNA SYSTEM

In this chapter it will be shown that when the terminal voltage of

a conventional linear antenna is square-law detected and time-averaged,

the resulting output is Just a special case of a cross-correlation antenna

system. This means that a comparison of a linear and a cross-correlation

system should be made between the square-law detqcted output of the former

and the cross-correlated output of the latter system.

7.1 A Linear Antenna with Square-Law Detection

A diagram of a conventional linear antenna with a square-law detection

system is shown in Figure 10. After being passed through the RF filter

the antenna voltage can be written as

jt
d(t,u) = D(tu) e (144)

where by analogy with Equations (96) and (97)of Chapter 5, we have

D(tpu) = V(tu) * fD(t) ý(u). (145)

The antenna's pattern is D(u) and the filter response envelope is fDCt).

This filtered signal is fed into a square-law device whose output is

d S(tu)= Re D2(tu) e j2Wts + I ID(tu) 12 (146)

Sb2 2eJ

This signal is then time-averaged. Since the double frequency component

of the square-law detector output has a zero average we obtain
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LINEAR APERTURE

_ /a0 a x

do(tiu)

FD(W) FILTER

IF d(tu)

dsL(t,u)

LOW-PASS

dsL(t,u) [Red(t,u)]F() 
FILTER

(d SLu(tu%

Figure 10. A Conventional linear Antenna which Uses Square-Law
Detection.
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S ,(dsitv1%I =iK(ID(t,u) i~"(147)

Now it will be recalled that the cross-correlation's complex output

is

RAB(T,u,v) < c(t,u) B* (t-T,v)> • (148)

Comparing these two results we see that except for the constant factor.

l/2,the output from the square-law detection system is simply a degenerate

case of the cross-correlator output which occurs when A(t,u) = B(t,u) = D(tu).

It is half the Autocorrelation function of the signal from antenna D" evaluated

at T =0.

V V*
2 lcýSLf}>= T(T,u,v) *fODDr) D(u) D (v) (149)

"T=O
U=V

where
V•

f DD (T) f Dn(T) * f D (T) . (150)

7.2 Disadvantages of the Conventional System

Since the input to the square-law detector is the terminal voltage

of only one antenna with only one scan parameter u, w see! that when

the source distribution is partially coherent, it is impossible to-obtain the

three-dimensional mapping of the mutual coherent: function of

the source distribution. As indicated by Equation (149) one can only
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obtain the values of the antenna voltago's autocorrelation function

along the single line, T = 0, u = v, whereas the cross-correlation

system employing a single aperture yields the values of the filtered

function for all points in the three-dimensional output space of the

system,

In the case of incoherent sources the problem is not nearly as

serious since even with the correlation system it is only the u = v plane

that is considered when the source distribution is scanned, (See Chapter 5,

Section 7). Indeed the only difference in the space domain between

the two outputs is that the power pattern of the conventional system

is ID(u)I 2 and that of the cross-correlation system is A(u) B (u)

(compare Equations (103) and (149)). The latter pattern is clearly more

flexible since it is the product of two distinct field strength patterns.

It degenerates to the conventional power pattern when the two field

strength patterns are identical, (A(u) = B(u) = D(u)).

7.3 Comparison of the Two Systems for The Case of Dolph-Chebyshev

Array Synthesis

Let us first consider a conventional system whose antenna is in

the form of a linear array, It was shown by Dolph40 that the optimum

array pattern is given by

D = T (n) (151)n

where L' yP cos tPI sin 0),

= element spacihg,

f) angle raeasured from the normal to the array,

n+l = number of elements in the array,



78

T n40) is the Chebyshev polynomial of degree n.n

The value of US is related to the sidelbbe level P of the pattern by
0

the formula

P 20 log1 0 T n 0 )o (152)

The pattern is optimum in the sense that for a given array, of all patterns

with an arbitrary sidelobe level p, the Chebyshev pattern has the

narrowest beamwidth, or conversely, of all patterns with a given

beamwidth it has the lowest sideIobe-. .

However, if the terminal voltage of such an optimum array is square-

law detected, then the detector output for a point source in the

direction Y is proportional to
5

D&-'P )1 2 = Tn2 -4 8)• (153)

This output is a polynomial of degree 2n but is not the Chebyshev

polynomial of that degree, T 2n(k ). Thus when the power pattern is

considered the conventional Dolph-Chebyshev design is not optimum.

Let us now jurn our attention to the cross-correlation system shown

in Figure 11. The array is given the weighting coefficients necessary

to produce the conventional field strength pattern T n0). However,

the center element of the array has its signal split into two parts; the

first is given the amplitude.-1 (1 - and the second the amplitude
1 1

1 (1 + -) The signals from the other n elements are combined in the
2 ý

*For a discussion of_,he properties of these orthogonal functions, see
Courant and Hilbert , pp. 88-90.
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usual way to form T (n'); however, since the central element's signaln

(normalized to 1) is missing we actually obtain T &) - 1. This signaln

is split in two halves and to one half iS added the first part of the

center element's signal to form

A&) =1 (T ) " (154)
2 n 0

Likewise BO) is fQrmed:by adding the remaining two signals.

B&) =1 (T(4 + 1 (155)
2 n 7

Now if we note of the following identity

T 2n() = 2Tn 2 1 - 1(156

-and -±f the abovc pair of combined signals are cross-correlated with

zero time delay It.fs easy ,to-, see, that-except -for a constant- factQr:vwet

bbtain the: followiUtgproduct pattern

Ret') = AO) B• ) = T (n') K157)2n

For the point source in the direction 4' we haves

RC) = T2n - LPs ) (158)

36
as the system output. This method, due to Price , yields the desired
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result. The system output is a Chebyshev polynomial of degree 2n and as

such it has the lowest sidelobes, of any possible pattern of the array

when a certain beamwidth is specified. In particular, the improvement

in the sidelobe level of this cross-correlation pattern over that of

the conventional Dolph-Chebyshev pattern (i.e., Equation (153)) is

shown in Figure 12. Both patterns have the same beamwidths measured

to the first null and the element spacing is X/2. The improvement,

plotted as a function of the sidelobe level of the conventidndl pattern,

is about 6 db but is slightly higher for small arrays and relatively

high sidelobe levels.

It is worth remarking that the method of synthesizing the product

pattern T 2n), which we have just described, is not uniquel To show

this we note that we can write

2n

T 2n) =2n- i P-k) (159)
k=l

where tPk' the kth zero of the polynomiai~is given by

k = cos [2kn- 1 IT], k = 1 2, .... 2n. (160)

The 2n zeros determine the polynomial. They can be arranged in two groups

of n zeros in

1 (2n)!
w 1(n!))

ways.
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Since one group of n zeros will determine say A41), and the other will

specify B(C), we see that there are W possible ways to synthesize the

product pattern T 2n () = A&) B* 0). It is natural to ask if there

is an optimum factorization of T 2n ), i.e., which of the W possible2n

pairs of factor patterns A&) and BO) is best in some way.

If the system is being used to receive a signal from some known

direction, and if there is a distribution of incoherent noise sources in

addition to the signal, then the system output will be

RS(T, ) = [So(T)6 5 ) + N(T * AB (T) AA&) B*(4) (162)

where S (T) 6&04 S ) and N(T,4) are the signal and noise coherence functions

respectively. It is clear that it does not matter how the zeros of

T 2n() are shared between AO) and BO) since these patterns enter the

output expression simply as the product Ad) B* () = T 2(4). Consequently2n

the W possible ways of producing the optimum product pattern are all

equivalent when the sources are incoherent.

This is not the case for coherent and partially coherent sources,

In particular, let us consider the case of a desired signal incident from

the direction 'F and a coherent interfering signal from an arbitrary
5

direction 'F . In practice this situation occurs when there are twoc

distinct paths between a transmitting and a receiving antenna (multipath

propagation). It has been shown elsewhere51 that if the relative

amplitudes of the desired and interfering signals are 1 and Se respectively

(9 is the relative phase), then the real system output, when T'= 0'and

both patterns are beamed in the s direction, is proportional to
5
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"p, Ao('s-4')+B s s-'F)A Uc + B S c

R(O,4) = 1 + 2S 2 Cos

+ S2 Aos - 4 ')B( 4 ~ -4C) (163)

where

0 - A(O) ' Bo EC) ' (164)

are the normalized, real, factor patterns of T2 .0). Notice that the

second term in the above expression, which is due to the cross-product

of the desired and interfering signals, is proportional to the sum of the

two factor patterns. If the interfering signal is low level (S << 1),

the interference rejection will depend on this sum pattern. Now if

we select the factor patterns in the manner of Figure 11 then we have

0 . .. . C '+ S C 2

T 0)T(0) + jl5n 1

T n s_ 4. c 2T (0)
n (166)

T (0)1
n

2T (0)n

If, as is usually the case, T (0) >> I, we can write the sum pattern to

a good degree of approximation as

l[Ao0 -qc) + BO(P4u ) ]nP Tn(s8s4 c) (167)

2 oBs C 0 s c
n
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Consequently, the output is

R (0,4') = 1 + 2S n S cos 9+ S2 T'2 n (168)
T (0) T2 (0)

and we see that not only does the system reject the self-product of the

interfering signal in the optimum Chebyshev fashion (T 2n( s -c )),

but the cross-product of the two signals is also rejected in the optimum

fashion (T n -4' ))o This occurs only if the factor patterns AO) andn s c

BO) are given by Equations (154) and (155) respectively. In this sense

then-, this factorization is the optimum one.

Finally we should note that since the pattern of any uniformly
52

spaced linear array can be represented as a polynomial, we can synthesize

a product pattern of any form by simply determining the zeros of the

37 61~pattern and distributing them equally between its two factor patterns.'.

The manner in which the distribution is made could be determined from

considerations of interference rejection as in the Chebyshev case0

The patterns of two coincident arrays of n+l elements will each be a

polynomial of degree n. Their product pattern will be a polynomial of

degree 2n with 2n distinct zeros0 On the other hand the power pattern

of a conventional array of n+l elements will also be a polynomial of

degree 2n but will have only n distinct zeros, Consequently we can

say that the-product pattern has twice as many degrees of freedom as the

conventional power pattern.
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8. MULTIPLE CROSS-CORRELATION

Having studied in some detail the ,ctross'-cotrela~tibn of the signals of

two antenna.s we now will consider the effect of multiple cross-

correlation of the signals from an arbitrary number of antennas. By

now it is well-known that when used for mapping the temperature distribution

205 31of remote sources these systems are basically nonlinear.0' . The output

of a four-antenna system, for example, will contain cross-product terms due

to sources in different directions even when their signals are mutually

incoherent. The explanation for the failure of such systems is simple.

The temperature distribution is a distribution of average power and as such,

is determined by a second moment of the probability distribution of the

field phasor V(tu), i.e.,

T(T'UV uf Uv V p v "

T u = tIY V-T pJVt) Vt-Tl dVt, udVt (169)

where - [Vt u'VtT v is the joint probability distribution of the field

from the source in the u direction at time t and the field from th-e source

in the v direction at time t-T. To emphasize the fact that t. T, u, and v are

essentially parameters in the above integral, _,w have,for expmple;let'v be& thb

value of V(t,u) at time t and for the direction u. The integration, of

course, tsawer-all values ofithe conplex amplitudes V and V
t U t-T3 Iv

Now by going to a higher order of cross-correlation we are no longer

dealing with second moments and hence by definition with temperature

brightness. All temperature information about the distribution is contained

in the mutual coherence function T(T, uv). The information in the higher order
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correlations clearly concerns the higher order moments and hence can be

used to specify the Joint probability distribution of the sources, e.g.,

V *-

trt-~Tu 3 ' 'tru-V1tTlUI' t-T 2 , u2  V 3-3 u 3 " TnU . Conversely, if the

probability distribution is knr;wn, all of the moments can be determined

from it including the second or temperature moment. However, it will be

shown in Section 8.3 that the higher order moments of a gaussian distribution

are completely determined by the first and second moments.

8.1 A Multiple Cross-Correlation Antenna System

A diagram of the systemwhereby the terminal voltages of N antennas

are cross-correlated, is shown in Figure 13. In Appendix B a detailed

analysis shows that the complex system output has an expected value of

R AIA .. A(T V T 2' .-" ... N`,lUU

1 2- N 2j N ''U12N

V V* V'/~TCN)(TI T, 7.N .. Ul U,.U) * fl(r)of2(T-) f3(T3)f4(')
T (Tl j* ' ul " 1 1 2(T2 f3 r3 f4 (r4

V V V* v V
.. of (T) AI(U 1 2) A s(u) A ) A4(u) ....4 AI(U) (170)N N 11 2 33 4

where

T(N) (T T

Ef V(t-Tl, U1) * (t--,u2 *t-r '3 ... V(t-TWu (171)
V (t 2'"N'u 2 ) u.. ,, 'u),

with k and uk being the time delay and beam direction of the kth antenna

whose pattern is A k(u) and i1lter response envelope is fj,(t)
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It is clear from Equation (170) that a Fourier analysis of the output

will be simply a generalization to 2N dimensions of the analysis for the

case of a single cross-correlation. Thus the system output spectrum is

rA1A2'...... AN (WjY W 2'.... W NY Xl, x2' .... I V

(2(7) N tC(N) 2' N' XlW .XN) a (x2 a2 (x 2 ) a 3 (x)....

, V V, V(.....a N(xN) F1(cI) F2(ci2) .... F1,oJN) (172)

where

rAl...AN (WlW,2 ,)., xl, N' ... xN), t (N)(l'2', ... ON, X1, .., XN),

ak(xk): and Fk (wk),are the inverse Fourier transforms of

R A o..A n (-1 TI 2)...IT NY Ul'..., u N) N)• (T 1 T21... "N Ul•U 21.., 11)I

A k(u k), and fk(r)

respectively.

Letting Q 2._N be the support of the system function a (x I) a 2(x)

* V V V*
aNN x 1 22 ..... FN(W(N)j we define the principal solution for

the Nth order correlation system as the Fourier transform of
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t (N) rW I .. I W.~. rAAN •I' 1 N- x l " " XN )

A~ A 'XI.AN 1.i N' Xl,.".,XN) = (2 2 )N) (• 1 ) *(wN)a (xl). .a(x)

if ( N'l.., N) Xl1 .... I XN)E Q123... N (173)

= 0 , otherwise.

Thus the principal solution is

( (N)
TA • .A ArNl, 2,..N)uu, '2 N

00 00 0

1:9 N f fAl... A N l°' 21" "- ' 1 ' WN' "y 21)

-. 0-0 -00

e I 2 T2 . ..... -wTN-X 11 3+X2U 2-X3U3+..xNUN

dVl... d•Ndxl .... dx, (174)

which is a filtered version of the following Nth moment of the joint

probability distribution

cc00 00

(T T . T U U V U V

/v.1'-10 -00 v-, 3 *0

V U V Vr UV dV dV u.......dV UN (175)
:, 1 212 T NI UN T1, U 1 2' u2 TN-' ' 15
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Note that for N even, T = T = T 3 - T =0 add uI = U = u =.S1 2 3 N 1 2 3

- UN = u we get

(176)

T (N)(00...o,0,u,U,,....u) =E Vtu } = fvu j Vt dV,

which is the Nth moment of the probability distribution of the source in the

u direction,

It should be remarked that for the above results we have tacitly assumed

that N was -van. If N is odd the output in most practical cases will be

zero since most sources have even probability distributions (e.g., gaussian).

However 1 more general distributions are possible and their odd moments

can be measured by using an odd number of atenrnas. in Appendix B we give

t h e modification of the correlation system that will perform a correlation

of an odd number of signals.

8.2 Generalized Correlation Matrix

Just as it was shown in Chapter 6 that a cross-correlation of the voltages

of two antennas yields. only a part of the available information from the

system, so in the generalized case it can be shown that the multiple

correlation output RA ..A N(Tl,T2 ,...,TN, ulJu2 ,...,uN) is only one of NN

possible outputs, all of which are distinct functions of the delay and

scan variables. For example, we could form N distinct outputs from a

single antenna and obtain an N-dimensional cross-correlation just as we

obtained a two-dimensional cross-correlation of the signals from antenna A,$
(see Chapter 6). By analogy with that output we could let RA A A I (TI11

11- 1 3'
T NY il' A N he its N-dimensional counterpart. The 2 x 2

I
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correlation matrix will also have counterpart and the typical element of this

generalized correlation "matrix" is

RA kA A m:A (TI, T2 1 .... ,TN, UlV, u 2. .... UN) =

T () ( TT u ... ) * Y(Tl) * (T ) mT

1 XV o N .Jf 2 3..
V* (T V* v V*

...... f q(TN) Ak(u1) Ae (u2) Am(u3) ..... C uN (177)

where each of the N indices, k, I, iMI..., q, assume values from 1 to N.

Each element, RA A (TT T .. uN), of the generalizedAA . . . . . . A 1T' 2'"''''NU' 1....N

correlation matrix has a principal solution, T (N)A.(TA(Tu )
Ak A q N

associated with it. We define the principal solution of the Nth order

correlation system as a whole to be the sum of these NN principal solutions,

i.e.,

T(N) (T T u .,T (T

N N N
S.......ZTCN)AA .(,. (178)

k=j•1=1 q=l Ak q-

where

iA th ..... A of(TI- T2 ' ITN Ul 29

is the Fourier transform of
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(N) rAkAj .... A q ( WIP.'W N, xlo.."V-xN)
AkAAO..OAq i• ... JNl W ."XN) K N (27 F.(C (Gj)6L(x A (

k2) kI q N.kl1 q N

if (io.xN) Ek •0.q

- 0 , otherwise, (179)

and rA A (Wl,....,xN) is the inverse Fourier transform of the output
k q

cross-correlation function . A-(TIy ..... Iu NR k ...

8.3 Sources with Gaussian Statistics

If the sources have a gaussian joint probability distribution with zero
54

means it can be shown that

E V*(u) y*Ct- 2Y u2) V(t-TV3 , u)....V y (t-TN N

N12N

iT• E V'• t-T.j,u
p N /V (t-1 .9U1 ) V, u ) , if N is even,a-d~p- i ! [1j

/1

0, if N is odd, (180)

where a.d.px means all distinct pairs and

V* (t-T i,u) = V(t-Ti_,ui),for i odd,

= V (t-Ti. ,i), for i even (181)
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Thus the higher order moments of a gaussian distribution are all

expressible in terms of the sum of products of second order moments.

For example if N = 4 we can write

E V(t-T 1 ,U 1 ) V (t-T 2 ,'u 2 ) V(t-T3 ,1U3 ) V (t-T4,Nu)

T(T -T1.9 Ul1 u 2) T (Tr4-T3Y u3, u )

"+ T(T4-TI, u 1 , u 4 ) T (T2-T3, U3 , u2)

"+ T'(-T1 + T3' UI, U3 ) T'(-T2 +7 4 , U2' U4 (182)4

where T(T,uv) is given by Equation (19) and

T? (TuV) = E {V(t, U) V (t-Tv)} (183)

If the ýcomplex signals,.- have zero-mean statistically independent real

and imaginary components and the covariances of the components are the same,

47
then T(TIUuv) = 0. Such signals represent circular complex gaussian processes

This result is simply a generalization of the well-known fact that if

the mean -and variance (first and second moments) of a gaussian random

variable are known) then all higher moments can be deduced from them.

We can infer that if such is the case no further information about the

source distribution is available in the higher order correlations.

Consequently, if we knew a priori that the sources had gaussian statistics

a single cross-correlation of the signals would be sufficient.

*See, for example, Davenport and Root 1 3 pp. 146-147.
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Conversely, if the measured higher order correlations are related to

the measured second order correlations in the manner indicated by

Equation (180), then one can infer that the source distribution has

gaussian statistics.
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9. THE APPLICATION OF CROSS-CORRELATIOC ANTENNA S.YSTEMS TO RADAR

In this chapter it will be shown that antenna cross-correlation

techniques can be used to advantage in radar systems. In the radar

case, since one is bath tratibmitting-'knd:; receiving signals, it is

possible to use two antennas for transmitting as well as two for re-

ceiving, four antennas in all. To distinguish the two transmitted

signals, one is shifted in frequency by the amount C! with Wi<<<w The

receiving antenna system is designed to respond only to the cross-

product of these two signals which return after striking the targets.

Such a cross-correlation radar system has distinct advantages over

the conventional system. It will be shown that the directivity for a

given side lobe level can be increased by extending the Dolph-Chebyshev

synthesis technique to the composite pattern of the four antennas. Further-

more, since the system is designed to respond to the cross-product of the

two returning signals, it will be shown that the effect of remote active

noise sources is virtually eliminated in the time-averaged system output.

9.1 The Cross-Correlation Radar System

A diagram of the system is shown in Figure 14. Thete- are fbur

antennas; two of which arb used. for transmitttng.:(Al, and A-)' and

tivb ofwhich are used-f or receiving, (BIand B2). The pulsed transmitter

signal is split in two equal parts and that part which is fed to antenna

A2 is tagged with an additional frequency Ol, i.e., the carrier frequency

is shifted from wo to wo + Cio with w >>> wo This distinguishes the twoo o ar o i"

signals which are transmitted by the antennaso
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After striking the target (or targets) the signals return and are

received by- the other pair of antennas, B and B2' In practice of

course the four antennas need not be physically separated. One could

use four coincident antennas which share the same aperture (see

Section 9.2). The cross-correlation of the terminal voltages of these

antennas is, in principle, the same as with any correlation system,

except that the various filters ,uSed brust :bhe wide-bdnd -in .i

order to pass the video pulses of the radar. A detailed analysis of

the processing is given in Appendix C.

The system output in the radar case is usually displayed on an

oscilloscope. Thus, a saw-tooth wave, synchronized with the pulse

repetition rate, is used to produce a repeating image on the 'scope.

The abscissa of the display is usually the range coordinate s, while

the vertical deflection, at each s, is proportional to the system

output and hence to the strength of the return from the target at that

range. In the appendix it is shown that for a target at the range r

and in direction v, the average deflection on the 'scope, as a function

of antenna beam direction u and range coordinate s, is

For simplicity of analysis we have assumed in what follows that the
filters' frequency characteristics are uniform in the band

Iw-w j< L1 1. We also have tacitly assumed the case of T =0.0
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(-r)~ ~ 2fA * iwr4Jp

R(su) = P (s-r) (v-u)B (v-u)A2 (v-u)B2 (v-u)e (184)
0 "2 J

where

P (s) I P(2 a/c)1 2  (185)0

is equal to the absolute square of the video pulse, P(2s/o), and A Cu),

A 2(u), B (u), and B 2(u) are the field strength patterns of the four

antennas.
2W r/c

The phase factor ed I t dejngdx•ontthe target distance, but for all

targets within the maximum practical range rmax)) one can choose w 1 low

enough so that this factor is almost unity. Consequently, we can rewrite

Equation (184), to a good degree of approximation, as

r , )
R(s u) = P (s-r) (V-u)Bl(V-u)A2(v-u)B*(v-u * (186)

Now with a conventional radar system, where quite often the signals

are transmitted and received on the same antenna , the analogous output is

D(s,u) = P (s-r) I D(v-u) 14 (187)
0

A duplexer is used to isolate the transmitted and received pulses.
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where D(u) is the antennats field strength pattern and we have assumed

that square-law detection is used. Comparing Equations (186) and (187)

we see that mathematically, the latter is just a degenerate case of the

former which occurs when

A1 (u) = A 2(u) = B (u) = B 2(u) = D(u). (188)

Clearly the cross-correlation system is preferrable since its four

distinct patterns can be specified independently; in a sense, this system

has four times as many "degrees of freedom" as the conventional one. We

will now consider the implications of this in the design of optimum

Dolph-Chebyshev systems.

9.2 OptimuLm Dolph-Chebyshev Design

We r~call from Section 7.3 that the pattern of an optimum Dolph-

Chebyshev array is given by Equation Z151) shown below

DC) = T n()-n

However, when such an array is used for radar, the system output is

proportional to

D(s)•) = P (s-r) T (4' -N ) (189)
0 fl 0 -

where, by analogy with Equation (187)., we have assumed a point target at
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range r and in the direction too As a function of - 41 the system

output is a polynomial of degree 4n but is not the desired Chebyshev

polynomial of that degree, T 4n(j - 4.

Now let us consider the special case of the cross-correlation radar

system when the four antennas A A Bi. and B2 are in the form of
1' 2' r'

coincident linear arrays. This is indicated in Figure 15 where an

aperture weighting network is shown which takes the signals to and

from the elements of the array and combines them in a predetermined way

to produce the four distinct patterns A(y), A2 (F), BI(4), and B2

In particular, if we let

A1 b =Tn (T ) + + 2

A (LP) T=
2 nT(4) 2 247)

(190)

1 n 2 + + 1

B2(4j) =T (Jý) 1 22 Tn()

then, except for a constant factor, we can show that the correlation

system output is
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R(s,0) = P (s-r) T (ýo - 4) ) (191)o 4no

This is the desired output since the system's over-all pattern is given

by the Chebyshev polynomial of degree 4n.

A quantitative analysis of the sidelobe level of this pattern and

of that of the conventional case, as given in Equation (189), shows.

that if both have the same beamwidth measured to the first null, then

for large arrays (e.g., I = - ) n > 9)Y the cross-correlation pattern's

sidelobe level is about 7 or 8 db lower than that of the conventional

pattern. This is shown in Figure 16 where the sidelobe level improvement

in db is plotted as a function of the conventional pattern's sidelobe

level, also in db. The second curve, indicated by "Mattingly System",

is the improvement obtained when two distinct antennas are used, one for

transmitting and one for receiving. If the two patterrw are given by

n T 4) (192)

B (q') TP 4 + 1 (193)

then the system output, corresponding to Equations (189) and (191), is
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R (s, 4) = P (s-ir) T (4o- 4) (194)
S0o 2n o

and the pattern is better than that of the conventional system in that its

sidelobes are lower by about 5 or 6 db as indicated in Figure 16. This

53
system was first proposed by R. L. Mattingly in 1960

It can be concluded that the conventional radar antenna system

employing a Dolph-Chebyshev design is inadequate due to the multiplicative

effect of the transmitting and receiving patterns and of the square-law

detection. Thus, instead of the optimum Chebyshev pcilynomial T 4n(), one
44

obtains TOP). It was shown that by properly selecting the fourn

individual patterns of the cross-correlation system, (Equation gL90)),

one can s.y nthesize the over-all pattern T 4n() which of course is

optimum in the sense mentioned above.

9.3 Noise Suppression

Since the transmitted and hence the received signals are in the

form of two distinct pulsc trains whose carrier frequencies differ by the fixed

amount wl, the receiving section of the system has been designed to

respond to the cross-product of these signals (it therefore is a true

cross-correlation system).

On the other hand, given a background distribution of active noise

sources, the random noise due to this distribution, which is incident on

the receiving antennas, will in general not have such a dual nature. The

noise distribution can be given mathematically by N(t.u) which gives the

field at the origin of the antenna coordinate system at time t due to the
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noise source in the direction u. The terminal voltages of the two

antennasdue to the noisecan be written as N B(t) and N B(t)

where

NBCt) = f N(t, u) B k(u)du (195)

for k = 1, 2.

Since the noise and signals are uncorrelated, the time-averaged

effect of cross-products of noise and signals in the cross-correlator

output will reduce to zero. In Appendix C it is shown that the "self-

product" of the noise in the output can be written as

nB(t)N (t) Ct e (196)
0 B 1 . B2

2s

The average value of n Mt) sampled at t = - + k T for N samples is
0 c 0

j N-I N* 2s-Jw C ) (197)

no, N(s) = Z' B1 + k T )N C- + iT T)eo N i k: 11 o B 2 c o 0

2s

where we have changed variables from time t to range s, with t = -- .
c

This is proportional to the average vertical deflection of the oscilloscope
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at range s and in the appendix it is shown that the expected value of

this deflection is

SN~s -J~l2s N-i T
sin-jw (LS +~ N- To) (198)

Fsin 1 1ITO c 2

oN BIB2 N sin

where

=B• EQB (-+ T) * (1 + kr ) ) (199)

2 2s

But

E [oN(, jl NBI sin N) 1 °T (200)
l211N sin W 1To

and

En-- E ,N(S s }Nim I N sin 0 TO 0 (201)
N-~ GoN --31 0 B1B 2 N sinW 1T



108

except for WTo= 2q ITj with q integral. Consequently, the time-averaged

output due to the noise is inversely proportional to the number of pulse

repetitions Nand in the limit as N approaches infinity, the noise output's

average valve approaches zero. We can explain this by noting that the

system is designed to respond to a pair of signals with a fixed frequency

difference wi) Since the noise does not have this dual nature its effect

in the system output averages to zero. The special cases W1To= 2q IT need

not concern us since we can always design our system to avoid these values.

This result contrasts with the noise output of a conventional system

employing square-law detection. In such a situation the part of the

terminal voltage of the antenna which is due to the noise is

NDCt) = f N(t,u) D(u) du (202)

whore D(u) is the antenna's field strength pattern. The low-frequency

output of the square-law detector duc to this noise voltage is

n SL(t) = I Nd(t) 12  (203)

This output has a poEitive average which we define as



109

cccn,,t) > N(204)

Consequently, in the presence of background noise the conventional system's

display will have a positive vertical deflection whose average value is

independent of range and is proportional to the average noise power ND.

However, if the antenna is scanned this averaged noise output will vary

with scan angle (except in the rather unrealistic case when the noise

sources are uniformly distributed). On the other handthe cross-

correlation system output due to the noise sources has a time-average of

zero which in general is independent of both range and scan angle.

9°4 Suppression of Jamming Signals

In some sxtuations there might be,in addition to the target echoes,

a series of jamming pulses which are received by the antenna. They will

be from the directions of the jamming transmitter (or transmitters) and

of any targets which can reflect thzs j ...... n.G. vo....h.

receiving antenna- If the carrier frequency o and pulse repetition rateo

T of this interference is the same as that of the desired echoes, a
0

conventional system has no choice but to accept both the signal and the

jamming noise.

The cross-correlation system differs from this since it is designed

to respond only to a pair of target echoes at frequencies wo and w +w

Therefore unless the jamming signals are also in this dual form the time-

average of the interftrence will approach zero as the number of pulse

repetitions increases The proof of this statement is essentially the same

as that fur thet suppresslon of random background noise of Section 9 3.
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10. THE MAPPING OF A TARGET DISTRIBUTION WITH A CROSS-CORRELATION RADAR SYSTEM

An arbitrary distribution of radar targets will generally produce

echoes which are partially coherent. In this chapter a general theory of

mapping such a target distribution is presented. One must use a cross-

correlation system the details of which are described in Chapter 9. The

resolution of the system is limited in two ways. First, the non-zero

beamwidths of the antenna patterns smooth the observed target distribution,

as the patterns are scanned. Second, due to the transmitted pulses not

being infinitety sharp, the measurement of the range of the targets will

also be a smoothed version nf the true range distribution.

Let us consider a system which uses just one aperture of length L.

Its four patterns,Au(u), A2 (v), B1 (u), and B 2(v) are generated by the aperture

weighting network of Figure 15. We will assume that the radar pulses have

a spectrum of width jnp. Under these restrictions, an aperture of length L

and a bandwidth of A% it is pertinent to ask what is the best one can do

in mapping the target distribution. We will now show that we can obtain a

principal solution which is similar to the one described in Chapter 5 for

active sources.

10.1 Description of the Target Distribution

The targets are assumed to be located within the range of the system

and also in the far-field of the antennas (2L 2/X r< r max) We associate

with the target in the u direction and at range r, the complex number

g(t,u,r)e . Note that it is a function of time; this allows for

target scintillation, rotations and translation as time progresses. The
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0

phase factor e is present because our reference point is located atI 0 i/C

the center of antenna aperture Thus g(t,u,r)e represents the target

distribution as observed from the antenna.

10.2 System Output in the Presence of the Target Distribution

Let us suppose that we are interested in the amount of correlation be-

tween the echoes from the targets at (u,)) and (vr). If we beam one of

the transmitting antenna patterns in the u direction and the other in the

v direction and if we delay the set of pulses sent to the nearer target by

s/c = (i-r).i'c seconds, then the two targets will be struck simultaneously

by the pulses. The delay of the pulses sent to the nearer target compen-

sates for the delay imposed by the extra distance s on the pulses sent to

the other target- Since the returning echoes also have a different distance

to travel, the output signals will also have a relative delay, i.e., the

signals from the more distant target is delayed in returning by an addi-

tional s/c seconds, Accordingly the output of the receiving antenna whose

pattern is beamed at the nearer target is delayed by the same relative

amount, This will insure that the echoes from the two targets enter the

cross-correlator at the same time,

the two transmitted signals are

-i j1/ i c
A 1i,.1,c U -u) z , P(t.i/c - 21cr 1 1A e (205)

k=ro 0

I
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N-I W1) r/c + wtl]
A 2(t+r/c, u-v) = Z P(t+r/c -2ko ) A 2(u -v)e 0  J (206)

k=o

We have advanced one signal by r/c seconds and the other by E/c seconds.

The second signal is tagged with the constant phase modulation W Note

that the pulse repetition rate is 2T where T = 2r /c. This permits ao O max

delay of one pulse relative to the other of as much as T with practically
0

no interference from preceding or succeeding pulses.

After striking the targets the pulses return and are received by

antennas B1 and B2. Their two output voltages are

2W
0 oo N- I 21 J (I-rd)

Bl(tnu v) = (t--2kT )e' A (u -U) +
1''''f JJ k=FO o1

0 - n00 k 1

2�+r-rl) • +l-2r

P( t~+r 2r1  ) L(At+(+IC -v)

c C 2o

BI(ul-U) g(t + u., r)e c duldr (207)
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o0. o N-I pt •.• 2r, J~o_• (Ur-2r2)

B (t2 r ruv) = ( F Z• ct - -- c--- 2kT )e A (u2-u) +
2f f k=o cI C 0 1 2

-c-cc 0

2(r-r 2) (r-r2)+ W t+2- 2

P(t+- -- 2kT )e C 2JAu2 fuk2-0J B 2 (u 2 -v)C 0

.2w r

g(t i2 eC du dr (208)
S-c--- ' 2 2 22

Note that the voltage B1 (tlr,uv) has been advanced by the amount 1/c

and B2 (t•ruv) has been advanced by r/c. In Appendix D it is shown

that when these signals are cross-correlated with T=Q, the-syStem output

can be written as

R(P,r,u,v) Go,,r.,uv) * C (u)C(v) P(Q)P(r) (209)

where CI (u) = A (u)BI (u) (210)

C2(v) = A 2(v)B 2(v) (211)

P(r) = P(2r/c) (212)
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and

G(T-,I rU, v) = eg(tpu,1) g (t-TRvr> (213)

is the mutual coherence function of the target disttibution.

Equations (210) and (211) show that in effect we have two independent

radar systems each of which uses distinct patterns for transmitting and

receiving. One system beams its two-way pattern in the u direction and

the other system beams its pattern in the v direction. Equation (212)

indicates the role of the pulse shape i1 the mapping of the target distri-

bution. Pr)= p (r-rj is the response, as a function of range r,

to a point target at r . The pulses P(t) in the radar system correspond

to the RF filter response functions f A(t) and fB (t) in the cross-

correlation receiving system described in Chapter 5.

10.3 Fourier Analysis of the System Output

The system output R(C, r,u,v) is a smoothed version of the mutual

coherence function of the target distribution (evaluated at r=0). If we

take the 4-dimensional inverse Fourier transform of Equation (209), the

convolution theorem can be used to obtain

r(g,T],x,y) = (21)2 g(o,•,11,x,y) iR9) p (q)cWx), c*.(y) (214)

where rC&,1',x,y) , g(oj,%'x.y)PM o), - I x), and c 2(y) are the
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inverse Fourier transforms of R(LrPu,v),G(oi, r,u,v), PU.),P(r), C1 (u))

and C .(v) respectively. Now since in Equation (210)
2

C I(u) = A (u) B (u)

we can again invoke the convolution theorem to obtain

i(x) = (27T) a1 (N) * b (x) (215)

where a Ix) and b 1x) are the inverse Fourier transforms of A (u) and

B I(u) respectively. In a similar fashion we can write

C (y) = (22r)• a( 2 y) * 1s(y). (216)

SI(x) and 2(y) can be thought of as the spatial frequency spectra of the

radar system's composite patterns C (u) and C 2(v), respectively.

Since the four apertures coincide and are all of length L, it follows

that

cI(x) 0, for Ixi >

(217)

c 2 (y) 0, for lyl > L.
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Thus the system has a spatial frequency response which is non-zero only

within the region of the xy plane for which IxI]< L and jyj< . L.

Similarly we define p(•) as the spatial frequency spectrum of the

system's response in the radial direction t. This spectrum is related

to the temporal spectrum of the transmitted signal pulse. Thus if

P(t) =p1 (p()egtdw (218)

then c c Al
(1) cG 9) d (219)

and

( 2 S P ( ) . (220)

But we stipulated that p(o) was practically zero for IwI > Aw (see pae 110);

consequently we have

forOi0,forL1 * (221)
c
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Thus the antenna system will reject those radial spatial frequencies which

lie outside the interval II -< - .-- . Clearly it will also reject those
C

frequencies TI such that Il • 2 .

It has been shown, therefore, that the correlation antenna system acts

as a low-pass filter of the spatial frequencies x and y which correspond to

the bearing directions u and v and it acts as P low-pass filter of the

spatial frequencies t and T) which correspond to range coordinates I and r.

The "aperture" of the system is a four-dimensional region centered at the

origin and with boundaries given by the hyperplanes - + LA
C

T1= ,- x = + L, y + L. Furthermore, within this region the system

function weights the target spectrum in a more or less arbitrary fashion

which depends on the pattern and pulse spectra. The output spectrum is

usually a distorted version of the target spectrum because of this.
I

However we can use Equation (214) to define

g (0 17.1X)r (9 1x, y) for (Snx~v) E C). (222)g(o,•,fl,x,y) = .2l 26 *xc;y ... .. .(22
0o (27T)2 we(X* (y) B(ý) •'P ()

0, otherwise,

where we have defined the four-dimensional point set Q to be that for.which
IcClX) c2(y) p(s) p(l) I 0. In our case it is the above-mentioned four-

dimensional volume with center at the origin. The Fourier transform of
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g CO(,Qt,x,y) will be defined as the principal solution,G0 (o, 1I,ru.v).

The spatial frequency spectrum, g (o0'1,x~y), is identical to that of the
0~

required mutual coherence function G(o1i,r,u,v), but only over the region Q.

For points outside of Q it is, by definition, equal to zero. Consequently

G (o, 1 ,r,u,v) is a smoothed version of G(o,f,r,u,v) whose non-zero spatial0

frequency-components are identical to those of G(1, 1 ,r,u v). In this sense

then, Go(o,,rlu, v) is the best or principal solution to the problem of

mapping a stationary target distribution with a finite antenna and a finite

bandwidth.
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11, CONCLUSIONS

In this thesis we have corsidered the application of cross-correlation

techniques to linear antenna arrays, Probably the most importan' result of

this work was the demonstration that a two-antenna cross-correlarion system

can be used to measure a source distribution's mutual coherence function.

Since coherent and partially coherent signals are not uncommon in practice,

e.g., radar, multipath propagalon., and scatterlngw from nearly objects, the

results obtained here should be of interest to the antenna engineer, The

demonstration tlat a conventional antenna system with square-law detection

is Just a special case of the cross-correktion system makes it possible to

evaluate in a straightforward manner the relative merits of a conventlonal

and a cross-correlatiun system, An interesting result is that the analysis

of multiple correlation systems is quite simple (at least in theory) since

their outputs are ammenable to Fourier analysis just as in the two-antenna

case, Finallyit is felt that the new cross-correlatlon radar system, in

spite of its involved circuitry, has a number of advantages over the con-

ventional system which should recommend it in some applications-
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APPENDIX A

THE CASE OF TWO-DIMENSIONAL SOURCE DISTRIBUTIONS AND PLANAR ANTENNAS

In the main body of this thesis we considered a one-dimensional source

distribution. More realistically, the direction of a remote radio source can

be specified as a point on a sphere of "infinite" radius with the antenna at

its center. This leads to a two-dimensional source distribution which can be

measured by a planar antenna system. We will now outline this generalization

from one to two dimensions, At the same time we will consider the practical

problem resulting from the directive properties of the elements of the array.

Then the problem of changing variables from the (u,v) domain to the (O,0! do-

main will be studied. Finally we will show that for electromagnetic fields the

Fourier transform relation between the far-field pattern and the aperture

distribution is a valid relation when the far electric field and the aperture

current density are considered. The relation between the far electric field

and the aperture electric field is not as simple.

A,1 The Output of a Planar Antenna Cross-Correlation System and the Effect of

Element Pattern

Let us consider a planar antenna located in the z = 0 plane. The total

pattern of the antenna can be written as

A(u, v) = E(u, v) A (uv) (A.1)a
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where

u =fsin8 cosQP v = sine sinrp (A.2)

and E(uv) is the element pattern which as a function of u and v varies much

more slowly than the array pattern A (u,v). The terminal voltage of the array,a

in the presence of the source distribution V(t.u, v), is

A(t uIv) V(t ujv ) E(u l v ) Aa(u -uv -v) du dv. (A.3)

Note that the array pattern can be scanned but the individual elements' pattern

cannot be scanned.

If we let

VE(tUPV) = V(t9u,v) E(uv) (A.4)

then Equation (A.3) becomes
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V ( , , I ,
A(t u~v) = I tu ,v ) Aa(u -u, v -v) du dv (A.5)

=V E(t uv) * A (u,v) (A.6)E a

From Equation (A.6) we see that the effect of the element pattern is to change

the source distribution as "observed" by thc array. This change is given by

Equation (A.2). It can be easily shown that the mutual coherence function&wtof

the "observed" source distribution is

TE (-r ul V1 , u 2 , v2 ) = E(tU vi) V:('t-r u 2 , v (A. 7)

= E(ulvl) E (u 2 - v2 ) T(T, u1 , V.9, U2 , V2 ) (A.8)

where T(T UJv 1 ,U 2,V 2 ) is the true mutual coherence function.

The output from a second planar array can be written as

B(t. u.v) = V (tu. v) * B (u V) (Aj9)
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and when the two output voltages are filtered and cross-correlated we obtain

V N/
R(r, UlV, u2, V2 T E (Tv.U Uv2) *f AB(T) A(u1 V, 1 ) B (u2-t v)- (A.10)

Equation (A.10) indicates that the cross-correlated output of the system is a

filtered version of T E(, ulVlu 2 'v 2 ) and not of the true mutual coherence

function T(TPu1, vl, u2 , v 2 ).

The inverse Fourier transform of R(r, •U•vlu 2 )V2 ) is

r (w, xl YI,' x2, Y2) = F ("" Xly yI x2, Y2) CAB (J xl, Yl'jx2 , Y2 ) (A.11)

where

C = FA(w) FBC() a(xl,y1 ) b (x2 (y2 ) CA.12)

We define

r(W., xYII x29Y 2)tEABI3 lYlX2 y ) --• gif (•aX, ylXnyr) €Af

A2'2Y c (x 1 1, YIx2 . Y2) Vl, x2, AB (A.13)

= 0 1 otherwise,
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The Fourier transform of tFAB (w, xl, ylx 2 , y2 ) is the principal solution. But

in view of Equation (A.8) we can write the principal solution as

(A.14)

TEA (T)ul, l U 2V 2 ) = T(-ru 1 , 1uV vU2V) E(uIv1) E (u 2 v2 ) * Q(T,$ uVl UV , V2)2

where, by analogy with Equation (117), Q(T, UlVl, ¾U 2 ,v 2 ) is the Fourier trans-

form of a system function which is uniform within Q AB the system's "aperture".

Note that the element patterns are included in the convolution integral of

Equation (A.14) and strictly speaking cannot be separated from the desired

mutual coherence function T(Tu v u v ) However in most cases the antenna

elements are much smaller than the array itself and the element patterns are

slowly varying functions when compared to Q(T, u1 ,vlu 2 , V2. If this is the

case we can write

(A. 15)

TEAB(TIU1)V1 U2, V2 E(UlV I') E (u 2'v 2 T(TUP Vl, 2vju 2Y) * Q(TjrulvjIU2JV2

to a good degree of approximation. Consequently we obtain
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TEA (T Ul vl u2 v2)

TAB (Tu Iv, u v) EAB ' 2' 2 (A.16)A E(ul, v ) E (u2, V )

as the principal solution corrected for the effect of element pattern. This

result is valid only in regions wherejE(uv)I is non-zero.

A.2 The Mutual Coherence Function in the Angular Domain

In practice it is more meaningful to express the mutual coherence function

as a function of the angular variables 8 and 99 rather than of u = fsinO cosý9

and v = Psine sinQ, Since T(TUl, v1 ,u 2 v 2 ) is a power density function we

know that T(O0,u, vl u, v 2) du dv du 2dv2 is the cross-power incident on the

antenna system from the elementary regions located at (U,•I, ) and (u 2 , v2.

Transforming this element of cross-power from the (uv) to the (8,ý9) domain,

we write

T(O1ul_ lv U2) duldv1du2dv =

T(O, PsinE)cos Yl,Psin8lsin 1,PsnG cosO sinO sinq2 )
1(2 2's( 2 02

(Ul v1 , U2, v2)
1 2 d a d E) d

(0] 'l1'1 ') 1 d 2 d92 (A.17)
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where

O(u) v) u 23v)22'V2 4 cose cE2 sin sine2 (A.18)

is the Jacobian of the transformation.

Now let us define the mutual coherence function in the angular domain

to be T(T, 0 1 ,2ý 1 0 2 %2 ). The cross-power incident on the system from the

elementary regions located at (6l,)and (e2,q 2 ) is

T (0, e1, 1, e2,%) ssinsine, dW1  2 dO1 dO2  (A.19)

If we equate this with the cross-power given by Equation (A.17) we obtaJn

T'1 (0, ,,0 2,92) =:]4coslCosa., T(Opsine cos9••sinelsinýlOPsinG-cos(9

Psino2 sin2) (A.20)

as the relation between the mutual coherence functions in the (u,v) and
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(0,ý) domains.

This result also applies when we consider the source distribution to

be weighted by the antenna element pattern.

TE (T,e 1 ,yIe 2 ,• 2 ) = P cose cosO2 E Psine1cos4',,PsinoisLn(i}

E Psin 2 C•os• nPsin 2 sinn22} 1 1 1 1 -cos'ýOpsino1sin1 Psino eos(P2-

PsinO sinW (A.21)
2 .2

and if the element patterns are slowly varying we can write

TB (. (A.22)

TAB (T.,6 0 V' 4n'EY = *A 91 P 'Vý2E(QsinG cosvP1Jsinl sinI9 ) E *3sinO coScP Psin( 5slnW)
1 < 11 2~ 2- 2 '2

A.3 Fourier Analysis for Electromagnetic Fields

Let us assume t hat the electromagnetic field is known on the plane

z = o. This plane can be thought of as the extended aperture of an antenna.
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Any electromagnetic field in the plane can be decomposed as the sum uf two

modes, the TE and TM modes, each of which can be represented by a scalar

function. In particular let us consider the TE mode and a field which

varies only in the x direction. This is analogous to the one-dimensional

apertures which were considered in the thesis, The electric component is

-~ A
E(xiZ) = y E (x,z) . (A.23)

The scalar field E (x, o) in the aperture plane has as Fourier transformY

01%JE C(fsinO), which represents a spectrum of plane wr'-es. Considering justY

one of these plane waves we can write

A -jp.r A FU -j[Psine x + Pcos9 z]
y Ey (sinQ) e = y Ey (Psine) e (A.24)

which represents the field at any point (xz) due to the plane wave. The

total field is the i½tegral of all such plane waves bver all possible

directions,
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0 -j[l3sinO X 4- PcosO z]
E (x,z) f E (qsine) e dcsinO. (A.25)

-00

The field at any point can be recovered from its plane wave expansion on

the plane z = o.

Equivalent Current Sheet

If we again consider the plane wave given by Equation (A.24) we can use

Maxwell's Equation

H(x, z) =j-0-- curl E(xz) (A.26)Jcop.

to write

"• ~~-P3cosE)"
H (PsinO) - E(PsinO) (A.27)xjw

as Luh x component of the plane wave~s magnetic field. But it also follows

from Maxwell-s Equations that

11
H (x,oJ = -o J (x) (A,28)2 y
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where J (x) is the density function of an equivalent sheet of electric
y

current flowing ir the z = o plane, Taking Fourier transforms of both

sides of Equation (A.28) gives

HQ(sinG) =- 3 (3sine) (A.29)x 2 y

and in view of Equation (A,27) we can write

"IV -• cosO

J (QsinO) - I(PsIn8). (A.30)y JWL

Substituting this result into Equation (A.25) gives

-00

y(x, Z) = -Jo f i y (Psine)) e~j•iex+•o_ Zd0 (A.31)

which represents the electric field at any point in terms of the spectrum

of the current density in the aperture plane.



135

Far-Field Approximation

Let us rewrite Equation (A.31) as

oo f 0N ~ coff(8-e)0

"E (roE) 0 f §@sine de (A.32)

-.00

where

r = x + z and 0 = tan I-f
o 0

If the observation point (r 0 o) is in the far-field r is very large and the

integral on the right side of Equation (A.32) can be evaluated by the method

of stationary phase. We can write

-J~r 00 ~ Pr (o- 2

E (r j8) - J' J ys -mneo) e J Ce 2 Q2d

(2)
2f H(0or Jy (Cs in0) (A 33)
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where H (2)"-r ) is the Hankel function of the second kind, Thus we see

that the far elecLrac field at a fixed radius r from the origin is propor-0

tional to the Fourier t!ransforn A the current density function in the

aperture with the .ransform variableý_ being FsLnO and x. This is not the

case for the relation between the aperture electric field and the far

electric field. Starting -vth Equation (A-25) we can show that in the far

field

E (r ,o ) 4 It H"' 3 •r ) jcoso E (s-3sn0 1 * (A.34)

Note the additional facto- cose 0
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APPENDIX B

OUTPUT OF THE MULTIPLE CROSS-CORREIATION SYSTEM

The signal from each of the N antennas is passed through an RF filter

and delayed a certain amount. Thus the signal from the kth antenna after

the filtering and the delay is

V k(t-Tk, u ) A k(t-T/k uk) er -Bo 0

where

A k(t) u) = I f V(t-tl,u) A k(u-uk )du fk (tl)dtI (B3.2)

-B 0

= V(touk) * £k(t) Ak (u k

As is shown in Figure 13, the signal from the first antenna is fed into a

frequency shifter (phase modulator) which increases the carrier frequency

from w 0 to w o + w 1 with wio >>> KI' Thus the signal can be written as

-j (WoT-Calt)
V 1 (t- u = A (t-T1. U )e 0 (B-3)

This signal is fed into a mixer (a squaring device) along with the signal

from antenna 2, V 2(t-Tu2). There is a component in the mixer output

at frequency w and it can be written as

I * ~ ~- ju" (TI-T2) Jw t

P1 2 (t T ,- u u Al(t-lul) A*(t-T -11' o e - (3-4)
1 119-1?2 1 11 2 2' 2'

I

a
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In a similar fashion the signal from antenna 3 is passed through a frequeaicy

shifting device with modulation frequency w3 and after it is mixed with

the signal from antenna 4 the mixer output contains a srignal whose carrier

is at frequency w 3 <« wo it is given by

P3(t T3IT u u ) = A (t- 3' u ) A4 (t- •r4 ,u4 ) e JWo 3- T e (B-.-5)

As can be seen in Figure 13 the signals of each adjacent pair of antennas are

correlated in this manner and each mixer output has a distinct carrier

frequency u/k, with k = N13,5.5_-'N-Io

*
If, after passing through a band-pass filter, each of these single

correlation outputs is mixed with the adjacent one, i.e., pI with p

p5 6 with &8' etc., and the process continued until a single output results,

we can write the expression for the signal in the output at frequency

W W 3 + .. N-3 + W as followsa~l• &3 +" "+/N- &N-i1

T T
P 123 .. . . N Vt i r 2 ' - ' T T N 9 U I lU V -' ° U N )

A (t-TrIUl)A 2 (t-r 2 uQ)A3 (t-T 3,u 3 ) A4 (t-T 4 ,u 4 ).......
(B.6)

)A e 4(t-TNIU_4 AN(l-TNlUN)e -42 3-T4+ -
N-i N-11 N4-1 N N'

Then if the output is fed into a synchronous detector along with a reference

signal at frequency wl-w3 ; iwN.' the deteclor output before time-averaging

wil'! be the following real voltage

*For simplicity of analysis we assum- that the filter has no effect on the
output signals in the narrow band w-w ; < LI w and completely rejects the

double frequency RF output signals and the signals in the low frequency
band 1w! ., A w.



139

T T T T u ... u =R Al(t-T1, A2 (t-'I*u 2 )
A A A lA2' 3''N' 1Y ' u2''N e(UN

A8 (t-T 3 ,u 3 ) A4 (t-T 4 , u)..A (t-T U " (T (B-.7)

jwo(t-T )
If one of the signals, say A (t-Tu l)e , is taken in phase quadrature

then the above result. becomes

Ii

RA AoA(t, T V1T2T'' .. N,ul,... uN) I l(t-T u A2(t.T2U

A 1A2 - w [T 1 -T 2 +T3 -N-TN {A1 1 2

.o.AN(t-T N u N) e - W0( - T3 . - J •(B--8)
N N' N

Thus we define

RAIA2 -.AN t(TT 2 , o°,TNYul...,UN)

e 0 ( R9I2 +..,UNI 
(B1-9)

as the complex system output for the case of N correlations. Using

Equation (B.2) we can write the expected value of the time-average of this

output as

1 3 00 00 0
RA A .. A C T ( ... ,T , . u ) = E ........ V(t-T l-t l Ul).

--1 0 0 0
* ' * ( -T -4 V

"-V (t-T2-t ,u ) V(t-T -t u3) V 4t-T4-t4 uI)....V (t-T -t U F
2 2 2 3 3' 3 4 4N N' N

Al( U• UI) A2 u -u2)..,A (u ~uN) f ikt l) f (tCt )du du .. du dt .dti (3-10)
Au-u) NRN 1 2 2 " NN 1 2 N, i(T t'
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f fj ° T (N) (1*T 4t T1 t;+ U ;' "'
- 1, 2 o W

-3 -13 0 0

' U - . (B.11)
A(u ut) A2u2-u' .tl) f2 (t )..... fN(t )duK...dut dt...dtN

li 2(2 2 N NN 1 22N I NN

where

{V* * • (•2

T(N)( T I2,.'o. uu•N) = E (t-TlVuI) V(t-T2 U2) .... V(t-TNuN)J (B2)

Since the source distribution is statlonary, this function is independent

of the exact time t at which the evaluation occurs. Inspection of the

integrand of Equation (B-1l) will reveal that we can write

RAIA Ad(T N' U '' N T(N) UN2 ' N' 9 .

AIA2" 1 1.A T'T2', o1 ,Nu ,N = (lT .. ,~U ... ,uN

V V V, V V, V
* [AI(u)A 2(u 2)A 3(u ) .... A N(u N) f (T ) f 2(T2) f3 (T ).....f N(TN)] N(Bl3)

which is the convolution of T (N) (-I,12, 0 21 , TW UN 1 UN)by.ths reverre.of the system

function A (u ) AN(u )... (ANu ) f (T )f (7 )f (T )- f (T).
1 1 2 2 N N 1il 2 2 33 N N

In the above derivation we have assumed that N was even. In most

practical cases this will be the only pertinent situation since most of

the source distributions will have even probability distributions, crg.,

gaussian, and hence all odd moments will be zero, However, this will not

always be the case and in order to measure the odd nioetta-a of a distribution

we must use an odd number of antennas The process is the same as for an
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even number except that the last antenna signal is shifted in frequency by

WN-&JN- rather than by w.N" It is then mixea directly with the output

signal resulting from the mixing of the signals from antennas N-2 and

N-1. The rest of the process is the same as before.

Finally we note that the two-antenna system is just a special case

of the above. The output of the single mixer is fed immediately into

the synchronous detector along with a signal at frequency wl" The output

is R (TIT uu2) and if we let TI= 2 U 2 ) V) A, = A1
A 1A 21''

and A2 = B, we have

R(2) (T T u v) (B-oI4)

A1A 2 1' 2' 1 2 AB '
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APPENDIX C

CORRELATION RADAR SYSTEM

A diagram of the system is shown in Figure 14. The pulsed trans-

mitter signal is divided into two equal parts, one of which is shifted

in frequency from w to w + w1 with w0 >>> wI This slight changeo 0 1' o 1"

in frequency can be accomplished by inserting jrrythev-feed -line k Wttary

phase shiftOr - whose phase change is at the constant rate of WI radians

per second.

These two distinct signals are then fed to antennas A1 and A2 and

the far fields of the two antennas can be written as

N-1
A l(tv) Z P(t-k r o)A (v) (C.1)

k=o

N-1 jWl t
A 2 (t,vw) = Z P(t-k To ) A 2(v)e (C.2)

k=o

where P(t) is the video pulse, and T is the pulse repetition period. We
0

have assumed that the transmitter is turned on at t = 0 and the pulse is

repeated N-i times. A (v) and A 2(v) are the far-field patterns of

antennas A and A2 respectively. The absence of RF filters in the
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feed lines of the transmitting and receiving antennas of Figure 14 is due

to our assuming, for simplicity, that ttc actual filters have uniform

pass-bands and hence pass the signals unaltered.

Now for simplicity let us consider the case of a single target in

the v direction and at a range r. The returning echoes are received by

the other two antennas, B and B ." The terminal vultage of antenna B
1 12

can be written as

(C.3)
N-1 jA j~(t_ 2rl, jW (t- 2r~r

bC(t) = Z P(t-- -- k To)ke (v)+ A'(v)e )(v)e
1 k=o 1 /12

2r
Note the time delay term -, where c is the velocity of light in thec I

medium. This is the time required for the pulses to reach the target and

after reflection to return to the antenna. It is common practice to

choose the pulse repetition period T so that if the maximum practical
0

Zr
target distance is r then T = max , Thus all echoes due to one

c
pulse will have returned before the succeeding pulse is transmitted. This

avoids any ambiguity in range measurement. If for the present we assume

that the target is stationary, each pulse will return at the same time

relative to its corresponding transmitted pulse. Consequently, we can,

fur simplicity of notation, consider the time interval 0, t < T knowing
0

that the returns of succeeding intervals will be identical to the first

whose response, with the carrier frequency factor suppressed, can be

written as
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B It) = P(t-tr) [A (v) + A2 (v)e (t-tr)] B (v)e- j0 tr (.4)

for O t < T

and where we have let

t 2 (C.5)
r C

The voltage of antenna B2 is

B2(t)= P(t-tf) [Al(v) + AJ2 2ej0 1(t-tr] -j0 t

for 0,< t < To , wh ere B Mv) is the receiving field strength pattern
2

of antenna B2 .

Now in order to distinguish the two output voltages, b Ct) is shifted

in frequency; it is fed into a square-law device along with a second signal

at frequency w02' The frequency w 2 is chosen to be much larger than the RhS

spectral width, A W, of the pulse P(t), while WaI is very much smaller. For
•0

example, if the operating trequency• j-j , of the radar is 10 Gc, and the

pulses are one miciosecond it. length then 1 Me, and we could let

-A = .IKc, and 2 I Ge. A filter is located at the frequency shifter's

output which passes only the signal at the difference frequency, - - W2o 2"
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This can be written as

t) = + (v)e J[W (t-t)- W2t]
S Pt-t A 1 A2 v B1 A 2 r (C.7)

This voltage, along with B 2t) is fed into a mixer which forms the square

of their sum, i.e.,

[ Re(B(t) + B2 (t))]2 -

Re I(t ) [Al(v) +A2(veJW (t-t) I[e o (t-t r()-W 24t

e +o (C.8)

Re [Ar (v) + AC2 Me j (t-tr) (t-t+ Re P(t-t: LlV)A +A 2 (Ier H2 Cv)e o r} .

If an RF filter, whobe passband is centered at frequency w2, is located

at the mixerioutput it will pass the following RF signal
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C(I) = IP(t-t r)12 [IAl(v)j 2 + 1A2(v)12

0(t J= (t-tr) + It

+ A * (v)A e LB1 (v)B (v) e t (C.9)+A(V)A2Cv)e + Al(v) A (~
1. 2 1 2 CvB1~ . (09

If this signal is fed into a synchronous (phase) detector along with a

reference voltage -t frequency w + W the detector output can b-e

written as

jw(t tI r~-'r +2 (Ce I Me jwlt J2e t- °°(.l0

T =o (vtelr (ve(v)e + C2()) (C.10)

where

Co (v) = A (V) B (v) A 2(v) B 2(v)

C0(v) = (AB(V),2 + JA2(0) 2 Bl(v) (e.l)

(I2 (v)1= A + .A( *)B 0 v

C2 (v) = Al(v) B (v) A (v) B*(v)
21 1 2 2
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As mentioned earlier, this result is valid for 0.< t < -T. The

output for any value of t can be written

N-I 2 r vjW1tr JW It
r(t) = Z P(t-tr-j )2 IC (v)e C1(v)

N k=o r

"t
Cw2 We (t-2 (C. 12)

In practice, a linear saw-tooth voltage wave, synchronized with the

pulse repetition rate, is often used to produce a visual display of this

output on an oscilloscope. Thus, the abscissa of the display is the

range coordinate s and 'the vertical defleetion is proportional to the

strength of the target return. For g'gtven range s this deflection is
2s

given by the values of r (t) sampled at t = k +2s The average
N o c

value of this deflection after N-1 repetitions of the pulse is

1N-1 *iWt jw1s+ kT
R (S)) -P (s-r) Z (ve I r + ClWe

+ C2o k= C o ( + k T

+ C 2(vWeJ2 2 I k- 0- tr)}
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si(N T) )W
1W t snN12 jI T + -S

P o(s-r6 (v+(),
0 0 N sin 1 Y

sin (N W 1 To JU1  N-lT + 4s + 2 r]

+ Cv) N sin(W ey) (C. 13)

where., in changing variables from t to a, we have redefined the pulse

function as

P(S) P 2 2 (C.14)0

It will be shown later that it is to our advantage to require that

W!? be small., say 0.5 radians or less. If this is the case,

sin W T C 1t T and the absolute value of the second and third terms of

Equation (C.13) can be written as

P (s-r) C. (- ei wR T +

0 1 N sin

(C.15)

in Nw1o jW 1  N-1)r 4 -c P+(s4r) 1 2j0(v)I 1C2 (v)M
+0C(v) e - L 0 C T1 0

2 N sin WTI T L CJ To Nlo1
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Note -thatas N increases. the absolute value at these terms approaches zero

and in the limit Equation (C.13) becomes

lim RN (s) = P (s-r) C (v)elr (C.16)
N o o

or

* , U~tr

R(s) = P (s-r) A (v) B (v) A 2(v) B 2(v) e (C.17)

A not uncommon case is when all the patterns are reai, and

one can write the actual real system output as

R(s) = P Cs--r) A (f-, fl (u) A (r) n' .) cos 2w (C.18)
a I''1l 2' 2' \e

But if 2(0 r/c=7Rtz4the output is zero, a rather undesirable result. The

cos (2w r/c ) factor is due to the time delay 2r/c between the transmitted

pulse and that which is received. As a consequence the reference signal

in the synchronous detector leads the desired signal by 2w r/c radians.

This, in general, will cause a reduction in the system output and for real
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patterns it is given by cos (2w Ir/c). Now if we select w Iso that w 1T . 5

radians, then the reduction in the system output will be to cosI(.5 100

= 88% of the maximum possible output. This will occur for targets at

the range limit r . For targets which are closer, the reducLion is less.
m~ax

A better and still rather simple scheme would be to set the reference

signal with a delay so that it is exactly in phase with the response from

targets in the center of the range at r /2. Then it would lead themax

responses from r and lag the responses from r=0,by 0.25 r-idians. Themax

reduction in the output in these cases would be to 96.8% of the maximum

possible value. Thus we see that by keeping the phase modulation

frequency low enough we can, to a reasonable approximation, obLain the

following average response at the position s on the oscillcscopeys range

coordinate

* * (0.19)
R(s) = P (s-r) A (v) A (v) B (v) B (v)

o 1 2 1 2

However it can be shown that by introducing a continuously varying

phase compensation in the reference voltage of the synchronous detector

one can completely remove the phase factor 2w 1rc for all values of r. It can

also'be shown that in. this case wiT need not be restricted to small values

and there is a certain value of W oT namely 4 7/3 , which will cause the

other two terms of the detector output to average out to zero at a maximum

rate. This scheme, however, is rather complicated and it might have nn

significant advantage over the one mentioned above in many practical s•it-

ations.
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For this simpler system it is clear that and r m are not

independent. In usual practice one is given the value of r e.g.,
max,

150 kilometers. From this, one can use the delay formulas to obtain

2r
T max (C.20)

o C

-3
In this case T = 2(150)/300,000 = 10 seconds. The pulses are repeated

olevery millisecond. Finally, we require that W 1I 5; hence in this case

-3el= .5/10 = 500 radians per second which is approximately 80 cps.

If, as is commonly done, the composite patterns of the antenna

system are scanned, then for a scan direction u, we can write the system

output, as a function of u and s, as follows

A* * (C.21)

R(s,u) P (s-r) A (v-u) A2*(vu) B. (v-u) B 2 (V-)).

This 15 the system response to a point target in the v direction and at.

range r.

SUPPRESSION OF BACKGROUND NOISE

Let us suppose that in addition to the distribution of passive targets

there is a background distrt'h-;ti. cf indeynr.-i•,t -i .. .
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If we assume that the antenna has an RF filter which passes only a narrow

band of frequencies centered at Wo we can give the following description0

of the noise as a function of time and direction

.1w t

n(t,u) = N(t,u)e 0 CC.22)

where N(t,u) is the narrow band complex noise phasor at time t due to the

noise source in the u direction. It is a random function of time and we

assume it is stationary; its statistical properties are invariant under

a shift of the time origin,

The system output will contain components due to the target

reflections alone (signals), the noise alone, and cross-products of the

reflections and the noise, But since the noise is random and the reflections

are not, these cross-products terms will average out to zero. It remains

to investigate the output components due to the noise alone. The two

output noise voltages arc

"r JP -W 2 )t
n (t) J N(tiu) B (u)due o (C.23)

B1 -~ 1

j(Wo- 2 )t ,
=BN t) £ (C 24)B1
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where

00

N B(t) f N(t.u) B (u)du, (C.25)
1 - 00

and

jW t
n Bt) = NB (t)e o (C.26)

B2 B

where

00

NB ( f N(t-u) B2(u)du. (C.27)
2 002

The mixer forms the product of the sum of these two voltages and the filter

at the mixer output passes the component at frequency w2. It is given by

n1 C) (t) N[ (t) e 2 (C.28)
n 2 L)2 N1 2t

The output of the synchronous detector corresponding to this voltage is

propuptiuiial L9
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* -JWl t

n (t) = NB (t) N (t) e - (C.29)
01 B2

The average value of this output, sampled at t = 2s/c + k To,

for N samples, is given by

1 N-i _2 \* 22s + k + kTe1

-( = 2; N + k T %e0 0) (C.30)
o. N k=o B 2 (

This is proportional to the oscilloscope's average vertical deflection at

the position s of the horizontal range coordinate. Since the noise is

stationary, and essentially uncorrelated between pulses, we can write the

expected value of n N(s). as
oN

1~~ ýc -Jl"

E ( N(s)j= N Efl 3 ( + kP3)NB (- + k e

N 2s

NIB B -1w -2 N-l -jkG) 7
-1 2 e Ic Ze 10e e

N k=0

sin N wi T "j 2 + -

N s 1 inN 0 e c 2 (C.31)

B B2N sinW IT
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where

NB B = E + A 1 N*(ý- + k (C. 32)
1N 2 §.BC + k / B2 \c +

is the mathematical expectation or statistical average of N (i-+ k A
NB + 7k and due to stationarity, is independent of k. From
"2 ( +

Equation (C.31) we can write

si n ( N w T
E tn 0.S IN BIB 21 N sin W T' (C.33)

and except when w = 2q7T. for integral q, we have

1iin 1 E T  i i s iii ;sin(N.W 1. )
N--)o toN00 .N sin w (C.34)

=0.
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APPENDIX D

RADAR MAPPING OF A TARGET DISTRIBUTION

If the output voltage B (t, .r)u v); as given by Equation (207) of

Chapter 10, is first shifted in frequency to w - W 2 and then mixed witho 2

C(t,2r u v) as given by Equation (208), the output of the band-pass

filtet (at frequency wa2 ) can be written as

00 00 co 0o

m(t,", r, u, v) JJA (ul-u) B1 (ul-u) A2 (u 2 -v) BCu2 -v) I:- :t
ff k=o i-•o

2 2W
J -r --- (r-r2

2* 2 c {j [-.rj1
P(t- '-ýi-r )-2kTo) P (t- 2(r-r )-2iT )e 2 -u---, r),

c 1 0 c 2 o c 'P1

, r-r2-( W2)
g (t,_ 2 ) u2 r 2)duIdu2drIdr2e (D.1)

Note that the usual correlation delay T, has not been introduced. Con-

sequently the system output will be the cross-correlation of the two

antenna voltages evaluated at T = o. We have also assumed that the RF

filters of the system are capable of pasbing the video pulses of the

radar with no distortion. However even with these simplifications the



157

mathematical analysis 5s still quite involved.

Letting the reference voltage be

2W rr 1 ~max i
-j 1 (w+w2 )t + ( r- - 2-

VREF(t) = e (D.2)

the output of the synchronous detector becomes

(tj Ir'u v) f C C(u-u) C2(V-UI) NP + 2 (1-rl)-2kT

"2 1 k -o pr0i --o
-0o -00 -00 -00

(D.3)
2w0

{} O [1-r] I-r r-r2
P + -(r-r2)-21T e g(t- -, Ulrl)g*(t+--z-, u r )dr dr du du

where we have defined

C l(u) = A (u) B I(u) (D.4)
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C(v) = A Cv) B 2v) . (D.5)

There are other terms in the output, just as in the single target case

(see Equation C.10), but since they all have a zero time-average we have,

for simplicity of presentation, umitted them in the above output

expression. Since the pulses are essentially non-overlapping (orthogonal)

we can write the output as

iNS ~,u V V "-
U v) = Cu)C 2 Cv) * j Z (s+-r -2krmax e

k=o f
0 0

(D. 6)

*1 .-.. S~~0(s+r)1'*vr'd r
P(s+r-r 2 -2kr e cg ( 2s*ýI-rl, u r) (2s+r-r 2 2  )12 d

where s = ct/2.

For a target at a given range, for example r1 , we will assume that

its reflection coefficie.t4, g(t,u, r ), is slowly varying compared to the

pulse that strikes it, This uccurs when
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s = t-rl-2krmax = 0 (D.7)

or

r= s+. - 2kr (D,8)max"

Similarly the pulse strikes the relatively unchanging target at range r2

when

r= s r - 2kr (D.N
2 max.

Substituting these results into Equation (D.6) gives

0000

RN(sl,r,u,v)= Cl(u) Cv) * f (a.2N 2 k=o j max

o 0

(D.10)

2w
-. o (l-r) ax

Ps+I e rs+2kr max u, r 1  r+,max-V r 2 )drdr 2

c C
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ý-2 w

=e eI (u) C2 (v) k=o + +2kr max P* s+r."2krmax)(

* lk '' 1 2 kr max ) g (s+2kr v1 s+r-2kr

Letting the output be sampled at s = 2kr (i.e. at t =kTo0, themax (iea k) h

average output is given by

2W
R(1 r U v) e (u) C (v) P(I) P (r)

rXv) P I k- o2

4kr uI g 4 krmax, v,r (D.12)

Now if the target function g(tu~r) satisfies the ergodic hypothesis,

then we have
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Ee g(tu,.e) g* (t-Tr,v,r) = G (T,Ir,u,v) (D.13)

where G(T,,r,u,v) is the mutual coherence function of the target

distribution.

The expected value of the system output after F pulses is

E{R(N r.uv)} e 1 k { (u) V2(v) T(I) C*(r)Nk~o 2

* G (o,1, r,uiv)} (D.14)

or

2w

T(Irujv) e e C- (u) C (Iv) PI) P •r) * G(o, Ir u v) , (D,15)

1 ±22

-j-- (-r
u...ltplying both sides of the above equation by - gives
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RC(,r,u,v) = e c R (I.r, u.v) (D.16)

v V*
C CU) Che (v) e (i ) P pG (o,l,r,UDV) (D.17)

as the required system Qutput.
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